Document Generated: 2023-08-29

Status: EU Directives are being published on this site to aid cross referencing from UK legislation. After IP completion day (31 December 2020 11pm) no further amendments will be applied to this version.

[X1ANNEX

Editorial Information

X1 Substituted by Corrigendum to Council Directive 80/181/EEC of 20 December 1979 on the aproximation of the laws of the Member States relating to units of measurement and on the repeal of Directive 71/354/EEC (Official Journal of the European Communities No L 39 of 15 February 1980).

CHAPTER I

LEGAL UNITS OF MEASUREMENT REFERRED TO IN ARTICLE 1 (a)

- SI UNITS AND THEIR DECIMAL MULTIPLES AND SUBMULTIPLES
 I^{F1}1.2. SI derived units
- F21.2.1. SI supplementary units

Textual Amendments

F2 Deleted by Directive 2009/3/EC of the European Parliament and of the Council of 11 March 2009 amending Council Directive 80/181/EEC on the approximation of the laws of the Member States relating to units of measurement (Text with EEA relevance).

[F11.2.2. General rule for SI derived units

Units derived coherently from SI base units are given as algebraic expressions in the form of products of powers of the SI base units with a numerical factor equal to 1.

1.2.3. SI derived units with special names and symbols

Quantity	Unit		Unit Expression	
	Name	Symbol	In terms of other SI units	In terms of SI base units
Plane angle	radian	rad		$\mathbf{m}\cdot\mathbf{m}^{-1}$

Special names for the unit of power: the name volt–ampere (symbol 'VA') when it is used to express the apparent power of alternating electric current, and var (symbol 'var') when it is used to express reactive electric power. The 'var' is not included in GCPM resolutions.

Status: EU Directives are being published on this site to aid cross referencing from UK legislation. After IP completion day (31 December 2020 11pm) no further amendments will be applied to this version.

		· · · · · · · · · · · · · · · · · · ·		<u> </u>
Solid angle	steradian	sr		$m^2 \cdot m^{-2}$
Frequency	hertz	Hz		s^{-1}
Force	newton	N		m·kg·s ⁻²
Pressure, stress	pascal	Pa	$N \cdot m^{-2}$	$m^{-1} \cdot kg \cdot s^{-2}$
Energy, work; quantity of heat	joule	J	N·m	$m^2 \cdot kg \cdot s^{-2}$
Power ^a , radiant flux	watt	W	$J \cdot s^{-1}$	$m^2 \cdot kg \cdot s^{-3}$
Quantity of electricity, electric charge	coulomb	С		s · A
Electric potential, potential difference, electromotive force	volt	V	$\mathbf{W} \cdot \mathbf{A}^{-1}$	$m^2 \cdot kg \cdot s^{-3} \cdot A^{-}$
Electric resistance	ohm	Ω	$V \cdot A^{-1}$	$m^2 \cdot kg \cdot s^{-3} \cdot A^{-}$
Conductance	siemens	S	$A \cdot V^{-1}$	$m^{-2} \cdot kg^{-1} \cdot s^3 \cdot A^2$
Capacitance	farad	F	$\mathbf{C}\cdot\mathbf{V}^{-1}$	$\begin{array}{c} m^{-2} \cdot kg^{-1} \cdot s^4 \cdot \\ A^2 \end{array}$
Magnetic flux	weber	Wb	V·s	$m^2 \cdot kg \cdot s^{-2} \cdot A^-$
Magnetic flux density	tesla	Т	Wb⋅m ⁻²	$kg \cdot s^{-2} \cdot A^{-1}$
Inductance	henry	Н	Wb ⋅ A ⁻¹	$m^2 \cdot kg \cdot s^{-2} \cdot A^-$
Luminous flux	lumen	lm	cd · sr	cd
Illuminance	lux	lx	lm·m ⁻²	$m^{-2} \cdot cd$
Activity (of a radionuclide)	becquerel	Bq		s^{-1}
Absorbed dose, specific energy imparted, kerma,	gray	Gy	$J \cdot kg^{-1}$	$m^2 \cdot s^{-2}$

a Special names for the unit of power: the name volt–ampere (symbol 'VA') when it is used to express the apparent power of alternating electric current, and var (symbol 'var') when it is used to express reactive electric power. The 'var' is not included in GCPM resolutions.

Document Generated: 2023-08-29

Status: EU Directives are being published on this site to aid cross referencing from UK legislation. After IP completion day (31 December 2020 11pm) no further amendments will be applied to this version.

absorbed dose index				
Dose equivalent	sievert	Sv	$J \cdot kg^{-1}$	$m^2 \cdot s^{-2}$
Catalytic activity	katal	kat		mol·s ⁻¹

a Special names for the unit of power: the name volt–ampere (symbol 'VA') when it is used to express the apparent power of alternating electric current, and var (symbol 'var') when it is used to express reactive electric power. The 'var' is not included in GCPM resolutions.

Units derived from SI base units may be expressed in terms of the units listed in Chapter I.

In particular, derived SI units may be expressed by the special names and symbols given in the above table; for example, the SI unit of dynamic viscosity may be expressed as $m^{-1} \cdot kg \cdot s^{-1}$ or $N \cdot s \cdot m^{-2}$ or $Pa \cdot s.$

Textual Amendments

F1 Substituted by Directive 2009/3/EC of the European Parliament and of the Council of 11 March 2009 amending Council Directive 80/181/EEC on the approximation of the laws of the Member States relating to units of measurement (Text with EEA relevance).