- Y Diweddaraf sydd Ar Gael (Diwygiedig)
- Pwynt Penodol mewn Amser (18/04/2012)
- Gwreiddiol (Fel y’i mabwysiadwyd gan yr UE)
Commission Regulation (EC) No 152/2009 of 27 January 2009 laying down the methods of sampling and analysis for the official control of feed (Text with EEA relevance)
Pan adawodd y DU yr UE, cyhoeddodd legislation.gov.uk ddeddfwriaeth yr UE a gyhoeddwyd gan yr UE hyd at ddiwrnod cwblhau’r cyfnod gweithredu (31 Rhagfyr 2020 11.00 p.m.). Ar legislation.gov.uk, mae'r eitemau hyn o ddeddfwriaeth yn cael eu diweddaru'n gyson ag unrhyw ddiwygiadau a wnaed gan y DU ers hynny.
Mae legislation.gov.uk yn cyhoeddi fersiwn y DU. Mae EUR-Lex yn cyhoeddi fersiwn yr UE. Mae Archif Gwe Ymadael â’r UE yn rhoi cipolwg ar fersiwn EUR-Lex o ddiwrnod cwblhau’r cyfnod gweithredu (31 Rhagfyr 2020 11.00 p.m.).
Version Superseded: 17/07/2014
Point in time view as at 18/04/2012.
There are currently no known outstanding effects by UK legislation for Commission Regulation (EC) No 152/2009, Division
B.
.
Revised legislation carried on this site may not be fully up to date. At the current time any known changes or effects made by subsequent legislation have been applied to the text of the legislation you are viewing by the editorial team. Please see ‘Frequently Asked Questions’ for details regarding the timescales for which new effects are identified and recorded on this site.
The samples intended for the official control of the levels of polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), dioxin-like polychlorinated biphenyls (PCBs) (1) and non-dioxin-like PCBs in feed shall be taken in accordance with the provisions of Annex I. The quantitative requirements in relation to the control of substances or products uniformly distributed throughout the feed as provided for in point 5.A of Annex I shall be applied. Aggregate samples thus obtained shall be considered representative for the lots or sub-lots from which they are taken. Compliance with maximum levels laid down in Directive 2002/32/EC shall be established on the basis of the levels determined in the laboratory samples.
For the purposes of this Part of Annex V, the definitions laid down in Annex I to Commission Decision 2002/657/EC of 14 August 2002 implementing Council Directive 96/23/EC concerning the performance of analytical methods and interpretation of results (2) shall apply.
The lot complies with the specification if the analytical result does not exceed the maximum level of non-dioxin-like PCBs laid down by Directive 2002/32/EC, taking into account the measurement uncertainty.
The lot does not comply with the specification if the upper-bound (3) analytical result confirmed by duplicate analysis (4) exceeds the maximum level laid down by Directive 2002/32/EC, taking into account the measurement uncertainty.
The measurement uncertainty shall be taken into account according to one of the following approaches:
by calculating the expanded uncertainty, using a coverage factor of 2 which gives a level of confidence of approximately 95 %. A lot or sub-lot is non-compliant if the measured value minus U is above the maximum level,
by establishing the decision limit (CCα) in accordance with point 3.1.2.5 of Annex I to Decision 2002/657/EC. A lot or sub-lot is non-compliant if the measured value is equal to or above the CCα.
These interpretation rules shall apply for the analytical result obtained on the sample for official control. In case of analysis for defence or reference purposes, the national rules shall apply.
The lot complies with the specifications if the analytical result of a single analysis,
performed by a screening method with a false-compliant rate below 5 %, indicates that the level does not exceed the respective maximum level of PCDD/PCDFs and the sum of PCDD/PCDFs and dioxin-like PCBs laid down by Directive 2002/32/EC,
performed by a confirmatory method, does not exceed the respective maximum level of PCDD/PCDFs and the sum of PCDD/PCDFs and dioxin-like PCBs laid down by Directive 2002/32/EC, taking into account the measurement uncertainty.
For screening assays a cut-off value shall be established for decisions on sample compliance with the respective levels of interest set for either PCDD/PCDFs, or for the sum of PCDD/PCDFs and dioxin-like PCBs.
The lot does not comply with the specification if the upper-bound (5) analytical result obtained with a confirmatory method and confirmed by duplicate analysis exceeds the maximum level laid down by Directive 2002/32/EC, taking into account the measurement uncertainty (6) .
The measurement uncertainty shall be taken into account according to one of the following approaches:
by calculating the expanded uncertainty, using a coverage factor of 2 which gives a level of confidence of approximately 95 %. A lot or sub-lot is non-compliant if the measured value minus U is above the maximum level. In case of a separate determination of PCDD/PCDFs and dioxin-like-PCBs, the sum of the estimated expanded uncertainty of the separate analytical results of PCDD/PCDFs and dioxin-like PCBs shall be used for the sum of PCDD/PCDFs and dioxin-like PCBs,
by establishing the decision limit (CCα) in accordance with point 3.1.2.5 of the Annex I to Decision 2002/657/EC. A lot or sub-lot is non-compliant if the measured value is equal to or above the CCα.
These interpretation rules shall apply for the analytical result obtained on the sample for official control. In case of analysis for defence or reference purposes, the national rules shall apply.
Action thresholds serve as a tool for the selection of samples in those cases where it is necessary to identify a source of contamination and to take measures to reduce or eliminate it. Screening methods shall establish appropriate cut-off values for the selection of these samples. The efforts necessary to identify a source and to reduce or eliminate the contamination shall be deployed only if exceedance of the action thresholds is confirmed by duplicate analysis using a confirmatory method and taking into account the measurement uncertainty (7) .
The requirements set out in this Annex shall be applied where feed is analysed for the official control of the levels of 2,3,7,8-substituted polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs) and dioxin-like polychlorinated biphenyls (dioxin-like PCBs) and for regulatory purposes.
Monitoring for the presence of PCDD/Fs and dioxin-like PCBs in feed may be performed with two different goals:
Selection of those samples with levels of PCDD/Fs and dioxin-like PCBs that exceed the maximum levels, or the action thresholds. This approach may involve a screening method allowing cost-effective high sample-throughput, thus increasing the chance to discover new incidents with high exposure and health risks of consumers. Screening methods may comprise bioanalytical methods and GC/MS methods. Their application should aim at avoiding false-compliant results. The concentration of PCDD/Fs and the sum of PCDD/Fs and dioxin-like PCBs in those samples with significant levels needs to be determined/confirmed by a confirmatory method.
Determination of the levels of PCDD/Fs and dioxin-like PCBs in feed samples in the range of low background levels. This is important in order to follow time trends, exposure assessment of the population and to build a database for possible re-evaluation of action and maximum levels. This goal is achieved by confirmatory methods enabling the PCDD/Fs and dioxin-like PCBs to be identified and quantified unequivocally at the level of interest. These methods can be used for confirmation of results obtained by screening methods and for determination of low background levels in feed monitoring. They are also important for establishing congener patterns in order to identify the source of a possible contamination. At present such methods utilise high-resolution gas chromatography/high resolution mass spectrometry (HRGC/HRMS).
For the control of maximum levels and action thresholds for PCDD/PCDFs and dioxin-like PCBs in feed, screening methods may be applied which are based on the comparison of the analytical result with a cut-off value and give a yes/no decision for indication for the possible exceedance of the level of interest.
methods based on the use of biological principles like cell-based assays, receptor-assays or immunoassays, hereinafter bioanalytical methods, which are able to detect the analytes of interest, include a calibration curve, give a yes/no decision for indication for the possible exceedance of the level of interest and allow to report the result as bioanalytical equivalents (BEQ), being an indication of the TEQ value in the sample;
physicochemical test (e.g. Gas chromatography-Mass spectrometry/Mass spectrometry (GC-MS/MS) or Gas chromatography/Low resolution mass spectrometry (GC/LRMS)) where the measured method precision characteristics do not meet the requirements for quantitative tests.
For calculation of toxic equivalent (TEQ) concentrations, the concentrations of the individual substances in a given sample shall be multiplied by their respective toxic equivalency factor (TEF), as established by the World Health Organisation and listed in the Appendix to this Annex, and subsequently summed to give the total concentration of dioxin-like compounds expressed as TEQs.
For the purposes of this Part B of Annex V, the accepted specific limit of quantification of an individual congener shall be the concentration of an analyte in the extract of a sample which produces an instrumental response at two different ions to be monitored with an S/N (signal/noise) ratio of 3:1 for the less intensive signal and fulfilment of identification criteria as described, for example, in standard prEN 16215 (Animal feed – Determination of dioxins and dioxin-like PCBs by Gas chromatography/High resolution mass spectrometry (GC/HRMS) and of indicator PCBs by GC/HRMS) and/or in EPA method 1613 revision B.
Bioanalytical screening methods will not give results at the congener level but merely an indication (9) of the TEQ level, expressed in bioanalytical equivalents (BEQ) to acknowledge the fact that not all compounds present in a sample extract that produce a response in the test may obey all requirements of the TEQ-principle.
Screening and confirmatory methods can only be applied for control of a certain matrix if the methods are sensitive enough to detect levels reliably at the level of interest (action threshold or maximum level).
For PCDD/PCDFs, detectable quantities shall be in the upper femtogram (10 –15 g) range because of extreme toxicity of some of these compounds. For most PCB congeners limit of quantification in the nanogram (10 –9 g) range is already sufficient. For the measurement of the more toxic dioxin-like PCB congeners (in particular non-ortho substituted congeners) the lower end of the working range shall reach the low picogram (10 –12 g) levels. For all other PCB congeners a limit of quantification in the nanogram (10 –9 g) range is sufficient.
For reliable results from confirmatory or screening methods, the following criteria shall be met for the TEQ or BEQ value, respectively, whether determined as total TEQ (as sum of PCDD/PCDFs and dioxin-like PCBs) or separately for PCDD/PCDFs and dioxin-like PCBs:
a With respect to the maximum levels. | ||
Screening with bioanalytical or physico-chemical methods | Confirmatory methods | |
---|---|---|
False-compliant rate a | < 5 % | |
Trueness | – 20 % to + 20 % | |
Repeatability (RSD r ) | < 20 % | |
Within-laboratory reproducibility (RSD R ) | < 25 % | < 15 % |
20 % of the sample extracts shall be measured in routine screening without and with 2,3,7,8-TCDD added corresponding to the level of interest, to check if the response is possibly suppressed by interfering substances present in the sample extract. The measured concentration of the spiked sample shall be compared to the sum of the concentration of the unspiked extract plus the spiking concentration. If this measured concentration is more than 25 % lower than the calculated (sum) concentration, this is an indication of potential signal suppression and the respective sample shall be submitted to GC/HRMS confirmatory analysis. Results shall be monitored in quality control charts.
Approximately 2 to 10 % of the compliant samples, depending on sample matrix and laboratory experience, shall be confirmed by GC/HRMS.
The rate of false-compliant results from screening of samples below and above the maximum level or the action threshold shall be determined. Actual false-compliant rates shall be below 5 %. When a minimum of 20 confirmed results per matrix/matrix group is available from the quality control of compliant samples, conclusions on the false-compliant rate shall be drawn from this database. The results from samples analysed in ring trials or during contamination incidents, covering a concentration range up to for example 2 × maximum level (ML), may also be included in the minimum of 20 results for evaluation of the false-compliant rate. The samples shall cover most frequent congener patterns, representing various sources.
Although screening assays shall preferentially aim at detecting samples exceeding the action threshold, the criterion for determining false-compliant rates is the maximum level, taking into account the measurement uncertainty of the confirmatory method.
Also for bioanalytical methods carried out under repeatability conditions, the intra-laboratory RSD r would typically be smaller than the reproducibility RSD R .
The difference between upper-bound level and lower-bound level shall not exceed 20 % for feed with a contamination of about 1 ng WHO-TEQ/kg product with 12 % moisture content (based on the sum of PCDD/Fs and dioxin-like PCBs). For lower contamination levels, for example 0,5 ng WHO-TEQ/kg product, the difference between upper-bound and lower-bound level may be in the range of 25 % to 40 %.
Separation of PCDD/PCDFs from interfering chlorinated compounds such as non-dioxin-like PCBs and chlorinated diphenyl ethers shall be carried out by suitable chromatographic techniques (preferably with a florisil, alumina and/or carbon column).
Gas-chromatographic separation of isomers shall be < 25 % peak to peak between 1,2,3,4,7,8-HxCDF and 1,2,3,6,7,8-HxCDF.
The range of the calibration curve shall cover the relevant range of levels of interest.
Bioanalytical methods are methods based on the use of biological principles like cell-based assays, receptor-assays or immunoassays. This point 8 establishes requirements for bioanalytical methods in general.
A screening method in principle classifies a sample as compliant or suspected to be non-compliant. For this, the calculated BEQ level is compared to the cut-off value (see 8.3). Samples below the cut-off value are declared compliant, samples equal or above the cut-off value are suspected to be non-compliant, requiring analysis by a confirmatory method. In practice, a BEQ level corresponding to 2/3 of the maximum level may serve as the most suitable cut-off value ensuring a false-compliant rate below 5 % and an acceptable rate for false-non-compliant results. With separate maximum levels for PCDD/Fs and for the sum of PCDD/Fs and dioxin-like PCBs, checking compliance of samples without fractionation requires appropriate bioassay cut-off values for PCDD/Fs. For checking of samples exceeding the action thresholds, an appropriate percentage of the respective level of interest would suit as cut-off value.
Furthermore, in the case of certain bioanalytical methods, an indicative level expressed in BEQs may be given for samples in the working range and exceeding the reporting limit (see 8.1.1 and 8.1.6).
When calculating the concentrations from a TCDD calibration curve, values at the lower and higher end of the curve will show a high variation (high coefficient of variation (CV)). The working range is the area where this CV is smaller than 15 %. The lower end of the working range (reporting limit) shall be set at least by a factor of 3 above the procedure blanks. The upper end of the working range is usually represented by the EC 70 value (70 % of maximal effective concentration), but lower if the CV is higher than 15 % in this range. The working range shall be established during validation. Cut-off values (see point 8.3) shall be well within the working range.
Standard solutions and sample extracts shall be tested at least in duplicate. When using duplicates, a standard solution or a control extract tested in 4 to 6 wells divided over the plate shall produce a response or concentration (only possible in the working range) based on a CV < 15 %.
Levels in samples shall be estimated by comparison of the test response with a calibration curve of TCDD (or PCB 126 or a PCDD/PCDF/dioxin-like PCB standard mixture) to calculate the BEQ level in the extract and subsequently in the sample.
Calibration curves shall contain 8 to 12 concentrations (at least in duplicates), with enough concentrations in the lower part of the curve (working range). Special attention shall be paid to the quality of the curve-fit in the working range. As such, the R 2 value is of little or no value in estimating the goodness of fit in nonlinear regression. A better fit shall be achieved by minimising the difference between calculated and observed levels in the working range of the curve, for example by minimising the sum of squared residuals.
The estimated level in the sample extract shall be subsequently corrected for the BEQ level calculated for a matrix/solvent blank sample (to account for impurities from solvents and chemicals used), and the apparent recovery (calculated from the BEQ level of suitable reference samples with representative congener patterns around the level of interest). To perform a recovery correction, the apparent recovery shall be within the required range (see point 8.1.4). Reference samples used for recovery correction shall comply with the requirements laid down in point 8.2.
Alternatively, a calibration curve prepared from at least four reference samples (see point 8.2.4: one matrix blank, plus three reference samples at 0,5 ×, 1,0 × and 2,0 × the level of interest) around the level of interest may be used, eliminating the need to correct for blank and recovery. In this case, the test response corresponding to 2/3 of the maximum level (see point 8.3) may be calculated directly from these samples and used as cut-off value. For checking of samples exceeding the action thresholds, an appropriate percentage of these action thresholds would suit as cut-off value.
Extracts may be split into fractions containing PCDD/PCDFs and dioxin-like PCBs, allowing a separate indication of PCDD/PCDFs and dioxin-like PCB TEQ levels (in BEQ). A PCB 126 standard calibration curve shall preferentially be used to evaluate results for the fraction containing dioxin-like PCBs.
The ‘bioassay apparent recovery’ shall be calculated from suitable reference samples with representative congener patterns around the level of interest and expressed as percentage of the BEQ level in comparison to the TEQ level. Depending on the type of assay and TEFs (10) used, the differences between TEF and REP factors for dioxin-like PCBs can cause low apparent recoveries for dioxin-like PCBs in comparison to PCDD/PCDFs. Therefore, if a separate determination of PCDD/PCDFs and dioxin-like PCBs is performed, bioassay apparent recoveries shall be: for dioxin-like PCBs 25 % to 60 %, for PCDD/PCDFs 50 % to 130 % (ranges apply for the TCDD calibration curve). As the contribution of dioxin-like PCBs to the sum of PCDD/PCDFs and dioxin-like PCBs can vary between different matrices and samples, bioassay apparent recoveries for the sum of PCDD/PCDFs and dioxin-like PCBs reflect these ranges and shall be between 30 % and 130 %. Any implication of substantially revised TEF values for the Union legislation for PCDD/PCDFs and dioxin-like PCBs requires the revision of these ranges.
The loss of compounds during the clean-up shall be checked during validation. A blank sample spiked with a mixture of the different congeners shall be submitted to clean-up (at least n = 3) and the recovery and variability checked by GC/HRMS analysis. The recovery shall be within 60 % to 120 % especially for congeners contributing more than 10 % to the TEQ-level in various mixtures.
When reporting BEQ levels, a reporting limit shall be determined from relevant matrix samples involving typical congener patterns, but not from the calibration curve of the standards due to low precision in the lower range of the curve. Effects from extraction and clean-up shall be taken into account. The reporting limit shall be set at least by a factor of 3 above the procedure blanks.
The relationship between bioanalytical results in BEQ and GC/HRMS results in TEQ shall be established, for example by matrix-matched calibration experiments, involving reference samples spiked at 0, 0,5 ×, 1 × and 2 × maximum level, with 6 repetitions on each level (n = 24). Correction factors (blank and recovery) may be estimated from this relationship but shall be checked in accordance with point 8.2.2.
Cut-off values shall be established for decisions over sample compliance with maximum levels or for the control of action thresholds, if relevant, with the respective levels of interest set for either PCDD/PCDFs and dioxin-like PCBs alone, or for the sum of PCDD/PCDFs and dioxin-like PCBs. They are represented by the lower end-point of the distribution of bioanalytical results (corrected for blank and recovery) corresponding to the GC/HRMS decision limit based on a 95 % level of confidence, implying a false-compliant rate < 5 %, and on a RSD R < 25 %. The GC/HRMS decision limit is the maximum level, taking into account the measurement uncertainty.
The cut-off value (in BEQ) may be calculated in accordance with one of the approaches set out in points 8.3.1, 8.3.2 and 8.3.3 (see Figure 1):
Use of the lower band of the 95 % prediction interval at the GC/HRMS decision limit:
with:
BEQ corresponding to the GC/HRMS decision limit, being the maximum level including measurement uncertainty
residual standard deviation
Student factor (α = 5 %, f = degrees of freedom, single-sided)
total number of calibration points (index j)
number of repetitions on each level
GC/HRMS sample concentration (in TEQ) of calibration point i
Calculation from bioanalytical results (corrected for blank and recovery) of multiple analyses of samples (n ≥ 6) contaminated at the GC/HRMS decision limit, as the lower end-point of the data distribution at the corresponding mean BEQ value:
Cut-off value = BEQ DL – 1,64 × SD R
With:
standard deviation of bioassay results at BEQ DL , measured under within-laboratory reproducibility conditions
Calculation as mean value of bioanalytical results (in BEQ, corrected for blank and recovery) from multiple analysis of samples (n ≥ 6) contaminated at 2/3 the level of interest, based on the observation that this level will be around the cut-off value determined under point 8.3.1 or point 8.3.2:
Restrictions to cut-off values:
BEQ-based cut-off values calculated from the RSD R achieved during validation using a limited number of samples with different matrix/congener patterns may be higher than the TEQ-based levels of interest due to a better precision than attainable in routine when an unknown spectrum of possible congener patterns has to be controlled. In such cases, cut-off values shall be calculated from an RSD R = 25 %, or two thirds of the level of interest shall be preferred.
Gas chromatography/Electron capture detection (GC/ECD), GC/LRMS, GC/MS-MS, GC/HRMS or equivalent methods.
Monitoring of at least:
two specific ions for HRMS;
two specific ions of m/z > 200 or three specific ions of m/z > 100 for LRMS;
1 precursor and 2 product ions for MS-MS.
Maximum permitted tolerances for abundance ratios for selected mass fragments:
Relative deviation of abundance ratio of selected mass fragments from theoretical abundance or calibration standard for target ion (most abundant ion monitored) and qualifier ion(s):
a Sufficient number of mass fragments with relative intensity > 10 % available, therefore not recommendable to use qualifier ion(s) with a relative intensity of less than 10 % compared to the target ion. | ||
Relative intensity of qualifier ion(s) compared to target ion | GC-EI-MS (relative deviation) | GC-CI-MS, GC-MS n (relative deviation) |
---|---|---|
> 50 % | ± 10 % | ± 20 % |
> 20 % to 50 % | ± 15 % | ± 25 % |
> 10 % to 20 % | ± 20 % | ± 30 % |
≤ 10 % | ± 50 % a | ± 50 % a |
Results exceeding the tolerance shall be confirmed with two GC columns with stationary phases of different polarity.
The performance of the method shall be validated in the range of the level of interest (0,5 to 2 times the level of interest) with an acceptable coefficient of variation for repeated analysis (see requirements for intermediate precision in point 8).
The blank values shall not be higher than 30 % of the level of contamination corresponding to the maximum level (11) .
Regular blank controls, analysis of spiked samples, quality control samples, participation in inter-laboratory studies on relevant matrices.
Addition to products (before extraction and clean-up process).
results shall be corrected for recoveries of internal standards;
recoveries of isotope-labelled internal standards shall be between 50 and 120 %;
lower or higher recoveries for individual congeners with a contribution to the sum of the six indicator PCBs below 10 % are acceptable.
recovery of internal standard(s) shall be controlled for every sample;
recoveries of internal standard(s) shall be between 60 and 120 %;
results shall be corrected for recoveries of internal standards.
In accordance with the provisions of Regulation (EC) No 882/2004, laboratories shall be accredited by a recognised body operating in accordance with ISO Guide 58 to ensure that they are applying analytical quality assurance. Laboratories shall be accredited following the EN ISO/IEC 17025 standard.
Trueness | – 30 to + 30 % |
---|---|
Intermediate precision (RSD%) | ≤ 20 % |
Difference between upper- and lower-bound calculation | ≤ 20 % |
Textual Amendments
[F1Table of TEF (= toxic equivalency factors) for dioxins, furans and dioxin-like PCBs:
WHO-TEFs for human risk assessment based on the conclusions of the World Health Organisation (WHO) – International Programme on Chemical Safety (IPCS) expert meeting which was held in Geneva in June 2005 (Martin van den Berg et al., The 2005 World Health Organisation Re-evaluation of Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds. Toxicological Sciences 93(2), 223–241 (2006)).
Abbreviations used: ‘ T ’ = tetra; ‘ Pe ’ = penta; ‘ Hx ’ = hexa; ‘ Hp ’ = hepta; ‘ O ’ = octa; ‘ CDD ’ = chlorodibenzodioxin; ‘ CDF ’ = chlorodibenzofuran; ‘ CB ’ = chlorobiphenyl. | |
Congener | TEF value |
---|---|
Dibenzo-p-dioxins (PCDDs) and Dibenzo-p-furans (PCDFs) | |
2,3,7,8-TCDD | 1 |
1,2,3,7,8-PeCDD | 1 |
1,2,3,4,7,8-HxCDD | 0,1 |
1,2,3,6,7,8-HxCDD | 0,1 |
1,2,3,7,8,9-HxCDD | 0,1 |
1,2,3,4,6,7,8-HpCDD | 0,01 |
OCDD | 0,0003 |
2,3,7,8-TCDF | 0,1 |
1,2,3,7,8-PeCDF | 0,03 |
2,3,4,7,8-PeCDF | 0,3 |
1,2,3,4,7,8-HxCDF | 0,1 |
1,2,3,6,7,8-HxCDF | 0,1 |
1,2,3,7,8,9-HxCDF | 0,1 |
2,3,4,6,7,8-HxCDF | 0,1 |
1,2,3,4,6,7,8-HpCDF | 0,01 |
1,2,3,4,7,8,9-HpCDF | 0,01 |
OCDF | 0,0003 |
‘ Dioxin-like ’ PCBs Non-ortho PCBs + Mono-ortho PCBs | |
Non-ortho PCBs | |
PCB 77 | 0,0001 |
PCB 81 | 0,0003 |
PCB 126 | 0,1 |
PCB 169 | 0,03 |
Mono-ortho PCBs | |
PCB 105 | 0,00003 |
PCB 114 | 0,00003 |
PCB 118 | 0,00003 |
PCB 123 | 0,00003 |
PCB 156 | 0,00003 |
PCB 157 | 0,00003 |
PCB 167 | 0,00003 |
PCB 189 | 0,00003 |
[F1The concept of ‘ upper-bound ’ requires using the limit of quantification for the contribution of each non-quantified congener. The concept of ‘ lower-bound ’ requires using zero for the contribution of each non-quantified congener. The concept of ‘ medium-bound ’ requires using half of the limit of quantification calculating the contribution of each non-quantified congener.]
[F1The duplicate analysis is necessary to exclude the possibility of internal cross-contamination or an accidental mix-up of samples. The first analysis, taking into account the measurement uncertainty is used for verification of compliance. In case the analysis is performed in the frame of a contamination incident, confirmation by duplicate analysis might be omitted in case the samples selected for analysis are through traceability linked to the contamination incident.]
[F1The concept of ‘ upper-bound ’ requires using the limit of quantification for the contribution of each non-quantified congener to the toxic equivalent (TEQ). The concept of ‘ lower-bound ’ requires using zero for the contribution of each non-quantified congener to the TEQ. The concept of ‘ medium-bound ’ requires using half of the limit of quantification calculating the contribution of each non-quantified congener to the TEQ.]
[F1The duplicate analysis is necessary to exclude the possibility of internal cross-contamination or an accidental mix-up of samples. The first analysis, taking into account the measurement uncertainty is used for verification of compliance. In case the analysis is performed in the frame of a contamination incident, confirmation by duplicate analysis might be omitted in case the samples selected for analysis are through traceability linked to the contamination incident.]
[F1Identical explanation and requirements for duplicate analysis for control of action thresholds as in footnote (5) for maximum levels.]
[F1Adapted to PCDD/Fs and dioxin-like compounds from ‘ Guidelines for the validation of screening methods for residues of veterinary medicines ’ , EU Reference Laboratories (EURLs) for residues of veterinary medicines and contaminants in food of animal origin in Fougères, Berlin and Bilthoven, 20/1/2010 , http://ec.europa.eu/food/food/chemicalsafety/residues/lab_analysis_en.htm]
[F1Bioanalytical methods are not specific to those congeners included in the TEF scheme. Other structurally related AhR-active compounds may be present in the sample extract which contribute to the overall response. Therefore, bioanalytical results cannot be an estimate but rather an indication of the TEQ level in the sample.]
[F1Current requirements are based on the TEFs published in: M. Van den Berg et al., Toxicol Sci 93 (2), 223–241 (2006).]
[F1It is highly recommendable to have a lower contribution of the reagent blank level to the level of a contaminant in a sample. It is in the responsibility of the laboratory to control the variation of blank levels, in particular, if the blank levels are subtracted.]
The Whole Regulation you have selected contains over 200 provisions and might take some time to download. You may also experience some issues with your browser, such as an alert box that a script is taking a long time to run.
Would you like to continue?
Y Rhestrau you have selected contains over 200 provisions and might take some time to download. You may also experience some issues with your browser, such as an alert box that a script is taking a long time to run.
Would you like to continue?
Y Diweddaraf sydd Ar Gael (diwygiedig):Y fersiwn ddiweddaraf sydd ar gael o’r ddeddfwriaeth yn cynnwys newidiadau a wnaed gan ddeddfwriaeth ddilynol ac wedi eu gweithredu gan ein tîm golygyddol. Gellir gweld y newidiadau nad ydym wedi eu gweithredu i’r testun eto yn yr ardal ‘Newidiadau i Ddeddfwriaeth’.
Gwreiddiol (Fel y’i mabwysiadwyd gan yr UE): Mae'r wreiddiol version of the legislation as it stood when it was first adopted in the EU. No changes have been applied to the text.
Pwynt Penodol mewn Amser: This becomes available after navigating to view revised legislation as it stood at a certain point in time via Advanced Features > Show Timeline of Changes or via a point in time advanced search.
Rhychwant ddaearyddol: Indicates the geographical area that this provision applies to. For further information see ‘Frequently Asked Questions’.
Dangos Llinell Amser Newidiadau: See how this legislation has or could change over time. Turning this feature on will show extra navigation options to go to these specific points in time. Return to the latest available version by using the controls above in the What Version box.
Gallwch wneud defnydd o ddogfennau atodol hanfodol a gwybodaeth ar gyfer yr eitem ddeddfwriaeth o’r tab hwn. Yn ddibynnol ar yr eitem ddeddfwriaeth sydd i’w gweld, gallai hyn gynnwys:
Mae’r llinell amser yma yn dangos y fersiynau gwahanol a gymerwyd o EUR-Lex yn ogystal ag unrhyw fersiynau dilynol a grëwyd ar ôl y diwrnod ymadael o ganlyniad i newidiadau a wnaed gan ddeddfwriaeth y Deyrnas Unedig.
Cymerir dyddiadau fersiynau’r UE o ddyddiadau’r dogfennau ar EUR-Lex ac efallai na fyddant yn cyfateb â’r adeg pan ddaeth y newidiadau i rym ar gyfer y ddogfen.
Ar gyfer unrhyw fersiynau a grëwyd ar ôl y diwrnod ymadael o ganlyniad i newidiadau a wnaed gan ddeddfwriaeth y Deyrnas Unedig, bydd y dyddiad yn cyd-fynd â’r dyddiad cynharaf y daeth y newid (e.e. ychwanegiad, diddymiad neu gyfnewidiad) a weithredwyd i rym. Am ragor o wybodaeth gweler ein canllaw i ddeddfwriaeth ddiwygiedig ar Ddeall Deddfwriaeth.
Defnyddiwch y ddewislen hon i agor dogfennau hanfodol sy’n cyd-fynd â’r ddeddfwriaeth a gwybodaeth am yr eitem hon o ddeddfwriaeth. Gan ddibynnu ar yr eitem o ddeddfwriaeth sy’n cael ei gweld gall hyn gynnwys:
liciwch ‘Gweld Mwy’ neu ddewis ‘Rhagor o Adnoddau’ am wybodaeth ychwanegol gan gynnwys