- Y Diweddaraf sydd Ar Gael (Diwygiedig)
- Pwynt Penodol mewn Amser (25/09/2019)
- Gwreiddiol (Fel y’i mabwysiadwyd gan yr UE)
Commission Regulation (EU) No 965/2012 of 5 October 2012 laying down technical requirements and administrative procedures related to air operations pursuant to Regulation (EC) No 216/2008 of the European Parliament and of the Council
Pan adawodd y DU yr UE, cyhoeddodd legislation.gov.uk ddeddfwriaeth yr UE a gyhoeddwyd gan yr UE hyd at ddiwrnod cwblhau’r cyfnod gweithredu (31 Rhagfyr 2020 11.00 p.m.). Ar legislation.gov.uk, mae'r eitemau hyn o ddeddfwriaeth yn cael eu diweddaru'n gyson ag unrhyw ddiwygiadau a wnaed gan y DU ers hynny.
Mae legislation.gov.uk yn cyhoeddi fersiwn y DU. Mae EUR-Lex yn cyhoeddi fersiwn yr UE. Mae Archif Gwe Ymadael â’r UE yn rhoi cipolwg ar fersiwn EUR-Lex o ddiwrnod cwblhau’r cyfnod gweithredu (31 Rhagfyr 2020 11.00 p.m.).
Version Superseded: 31/12/2020
Point in time view as at 25/09/2019.
There are currently no known outstanding effects by UK legislation for Commission Regulation (EU) No 965/2012, Division SUBPART C.
Revised legislation carried on this site may not be fully up to date. At the current time any known changes or effects made by subsequent legislation have been applied to the text of the legislation you are viewing by the editorial team. Please see ‘Frequently Asked Questions’ for details regarding the timescales for which new effects are identified and recorded on this site.
at the start of the take-off; or
in the event of in-flight replanning, at the point from which the revised operational flight plan applies,
shall not be greater than the mass at which the requirements of the appropriate chapter can be complied with for the flight to be undertaken. Allowance may be made for expected reductions in mass as the flight proceeds and for fuel jettisoning.
Textual Amendments
F1 Deleted by Commission Implementing Regulation (EU) 2019/1387 of 1 August 2019 amending Regulation (EU) No 965/2012 as regards requirements for aeroplane landing performance calculations and the standards for assessing the runway surface conditions, update on certain aircraft safety equipment and requirements and operations without holding an extended range operational approval.
accounting for reasonably expected adverse operating conditions such as take-off and landing on contaminated runways; and
consideration of engine failure in all flight phases.
the accelerate-stop distance shall not exceed the accelerate-stop distance available (ASDA);
the take-off distance shall not exceed the take-off distance available, with a clearway distance not exceeding half of the take-off run available (TORA);
the take-off run shall not exceed the TORA;
a single value of V1 shall be used for the rejected and continued take-off; and
on a wet or contaminated runway, the take-off mass shall not exceed that permitted for a take-off on a dry runway under the same conditions.
the pressure altitude at the aerodrome;
the ambient temperature at the aerodrome;
the runway surface condition and the type of runway surface;
the runway slope in the direction of take-off;
not more than 50 % of the reported headwind component or not less than 150 % of the reported tailwind component; and
the loss, if any, of runway length due to alignment of the aeroplane prior to take-off.
The following items shall be taken into account:
the mass of the aeroplane at the commencement of the take-off run;
the pressure altitude at the aerodrome;
the ambient temperature at the aerodrome; and
not more than 50 % of the reported headwind component or not less than 150 % of the reported tailwind component.
Track changes shall not be allowed up to the point at which the net take-off flight path has achieved a height equal to one half the wingspan but not less than 50 ft above the elevation of the end of the TORA. Thereafter, up to a height of 400 ft it is assumed that the aeroplane is banked by no more than 15°. Above 400 ft height bank angles greater than 15°, but not more than 25° may be scheduled.
Any part of the net take-off flight path in which the aeroplane is banked by more than 15° shall clear all obstacles within the horizontal distances specified in (a), (b)(6) and (b)(7) by a vertical distance of at least 50 ft.
Operations that apply increased bank angles of not more than 20° between 200 ft and 400 ft, or not more than 30° above 400 ft, shall be carried out in accordance with CAT.POL.A.240.
Adequate allowance shall be made for the effect of bank angle on operating speeds and flight path including the distance increments resulting from increased operating speeds.
For cases where the intended flight path does not require track changes of more than 15°, the operator does not need to consider those obstacles that have a lateral distance greater than:
300 m, if the pilot is able to maintain the required navigational accuracy through the obstacle accountability area; or
600 m, for flights under all other conditions.
For cases where the intended flight path requires track changes of more than 15°, the operator does not need to consider those obstacles that have a lateral distance greater than:
600 m, if the pilot is able to maintain the required navigational accuracy through the obstacle accountability area; or
900 m, for flights under all other conditions.
Textual Amendments
F2 Substituted by Commission Implementing Regulation (EU) 2019/1387 of 1 August 2019 amending Regulation (EU) No 965/2012 as regards requirements for aeroplane landing performance calculations and the standards for assessing the runway surface conditions, update on certain aircraft safety equipment and requirements and operations without holding an extended range operational approval.
the engine is assumed to fail at the most critical point along the route;
account is taken of the effects of winds on the flight path;
fuel jettisoning is permitted to an extent consistent with reaching the aerodrome where the aeroplane is assumed to land after engine failure with the required fuel reserves in accordance with point CAT.OP.MPA.150, appropriate for an alternate aerodrome, if a safe procedure is used;
the aerodrome, where the aeroplane is assumed to land after engine failure, shall meet the following criteria:
the performance requirements for the expected landing mass are met;
weather reports or forecasts and runway condition reports indicate that a safe landing can be accomplished at the estimated time of landing;
if the AFM does not contain en-route net flight path data, the gross OEI en-route flight path shall be reduced by a climb gradient of 1,1 % for two-engined aeroplanes, 1,4 % for three-engined aeroplanes, and 1,6 % for four-engined aeroplanes.
An aeroplane that has three or more engines shall not be away from an aerodrome at which the requirements of points CAT.POL.A.230 or CAT.POL.A.235(a) for the expected landing mass are met accordingly, at any point along the intended track for more than 90 minutes, with all engines operating at cruising power or thrust, as appropriate, at standard temperature in still air, unless points (b) to (f) of this point are complied with.
The two-engines-inoperative en-route net flight path data shall allow the aeroplane to continue the flight, in the expected meteorological conditions, from the point where two engines are assumed to fail simultaneously to an aerodrome at which it is possible to land and come to a complete stop when using the prescribed procedure for a landing with two engines inoperative. The en-route net flight path shall clear vertically, by at least 2 000 ft, all terrain and obstructions along the route within 9,3 km (5 NM) on either side of the intended track. At altitudes and in meteorological conditions that require ice protection systems to be operable, the effect of their use on the en-route net flight path data shall be taken into account. If the navigational accuracy does not meet at least navigation specification RNAV 5, the operator shall increase the prescribed width margin provided for in the second sentence to 18,5 km (10 NM).
The two engines shall be assumed to fail at the most critical point of that portion of the route where the aeroplane is operated for more than 90 minutes, with all engines operating at cruising power or thrust, as appropriate, at standard temperature in still air, away from the aerodrome referred to in point (a).
The net flight path shall have a positive gradient at 1 500 ft above the aerodrome where the landing is assumed to be made after the failure of two engines.
Fuel jettisoning shall be permitted to an extent consistent with reaching the aerodrome with the required fuel reserves referred to in point (f), if a safe procedure is used.
The expected mass of the aeroplane at the point where the two engines are assumed to fail shall not be less than that which would include sufficient fuel to proceed to an aerodrome where the landing is assumed to be made, and to arrive there at an altitude of at least 450 m ( 1 500 ft) directly over the landing area and thereafter to fly for 15 minutes at cruising power or thrust, as appropriate.]
The landing mass of the aeroplane determined in accordance with point CAT.POL.A.105(a) for the estimated time of landing at the destination aerodrome and at any alternate aerodrome shall allow a full-stop landing from 50 ft above the threshold:
for turbojet-powered aeroplanes, within 60 % of the landing distance available (LDA);
for turbopropeller-powered aeroplanes, within 70 % of the LDA;
by way of derogation from points (a)(1) and (a)(2), for aeroplanes that are approved for reduced landing distance operations under point CAT.POL.A.255, within 80 % of the LDA.
For steep approach operations, the operator shall use the landing distance data factored in accordance with point (a)(1) or (a)(2), as applicable, based on a screen height of less than 60 ft, but not less than 35 ft, and shall comply with point CAT.POL.A.245.
For short landing operations, the operator shall use the landing distance data factored in accordance with point (a)(1) or (a)(2), as applicable, and shall comply with point CAT.POL.A.250.
When determining the landing mass, the operator shall take into account the following:
not more than 50 % of the headwind component or not less than 150 % of the tailwind component;
corrections as provided in the AFM.
For dispatching the aeroplane, the aeroplane shall either:
land on the most favourable runway, in still air;
land on the runway most likely to be assigned, considering the probable wind speed and direction, the ground-handling characteristics of the aeroplane and other conditions such as landing aids and terrain.
If the operator is unable to comply with point (e)(2) for the destination aerodrome, the aeroplane shall only be dispatched if an alternate aerodrome is designated that allows full compliance with one of the following:
points (a) to (d), if the runway at the estimated time of arrival is dry;
points CAT.POL.A.235(a) to (d), if the runway at the estimated time of arrival is wet or contaminated.]
When the appropriate weather reports or forecasts, or both, indicate that the runway at the estimated time of arrival may be wet, the LDA shall be one of the following distances:
a landing distance provided in the AFM for use on wet runways at time of dispatch, but not less than that required by point CAT.POL.A.230(a)(1) or (a)(2), as applicable;
if a landing distance is not provided in the AFM for use on wet runways at time of dispatch, at least 115 % of the required landing distance, determined in accordance with point CAT.POL.A.230(a)(1) or (a)(2), as applicable;
a landing distance shorter than that required by point (a)(2), but not less than that required by point CAT.POL.A.230(a)(1) or (a)(2), as applicable, if the runway has specific friction-improving characteristics and the AFM includes specific additional information for landing distance on that runway type;
by way of derogation from points (a)(1), (a)(2) and (a)(3), for aeroplanes that are approved for reduced landing distance operations under point CAT.POL.A.255, the landing distance determined in accordance with point CAT.POL.A.255(b)(2)(v)(B).
When the appropriate weather reports or forecasts indicate that the runway at the estimated time of arrival may be contaminated, the LDA shall be one of the following distances:
at least the landing distance determined in accordance with point (a), or at least 115 % of the landing distance determined in accordance with approved contaminated landing distance data or equivalent, whichever is greater;
on specially prepared winter runways, a landing distance shorter than that required by point (b)(1), but not less than that required by point (a), may be used if the AFM includes specific additional information about landing distances on contaminated runways. Such landing distance shall be at least 115 % of the landing distance contained in the AFM.
By way of derogation from point (b), the increment of 15 % needs not to be applied if it is already included in the approved landing distance data or equivalent.
For points (a) and (b), the criteria of points CAT.POL.A.230(b), (c) and (d) shall apply accordingly.
For dispatching the aeroplane, the aeroplane shall either:
land on the most favourable runway, in still air;
land on the runway most likely to be assigned, considering the probable wind speed and direction, the ground-handling characteristics of the aeroplane and other conditions such as landing aids and terrain.
If the operator is unable to comply with point (e)(1) for a destination aerodrome where the appropriate weather reports or forecasts indicate that the runway at the estimated time of arrival may be contaminated and where a landing depends upon a specific wind component, the aeroplane shall only be dispatched if two alternate aerodromes are designated.
If the operator is unable to comply with point (e)(2) for the destination aerodrome where the appropriate weather reports or forecasts indicate that the runway at the estimated time of arrival may be wet or contaminated, the aeroplane shall only be dispatched if an alternate aerodrome is designated.
For points (f) and (g), the designated alternate aerodrome or aerodromes shall allow compliance with one of the following:
points CAT.POL.A.230(a) to (d), if the runway at the estimated time of arrival is dry;
points CAT.POL.A.235(a) to (d), if the runway at the estimated time of arrival is wet or contaminated.]
the AFM contains approved data for the required increase of operating speed and data to allow the construction of the flight path considering the increased bank angles and speeds;
visual guidance is available for navigation accuracy;
weather minima and wind limitations are specified for each runway; and
[F3the flight crew has obtained adequate knowledge of the route to be flown and of the procedures to be used in accordance with Subpart FC of Part-ORO.]
Textual Amendments
the AFM states the maximum approved glideslope angle, any other limitations, normal, abnormal or emergency procedures for the steep approach as well as amendments to the field length data when using steep approach criteria;
for each aerodrome at which steep approach operations are to be conducted:
a suitable glide path reference system comprising at least a visual glide path indicating system shall be available;
weather minima shall be specified; and
the following items shall be taken into consideration:
the obstacle situation;
the type of glide path reference and runway guidance;
the minimum visual reference to be required at decision height (DH) and MDA;
available airborne equipment;
pilot qualification and special aerodrome familiarisation;
AFM limitations and procedures; and
missed approach criteria.
the distance used for the calculation of the permitted landing mass may consist of the usable length of the declared safe area plus the declared LDA;
the State of the aerodrome has determined a public interest and operational necessity for the operation, either due to the remoteness of the aerodrome or to physical limitations relating to extending the runway;
the vertical distance between the path of the pilot’s eye and the path of the lowest part of the wheels, with the aeroplane established on the normal glide path, does not exceed 3 m;
RVR/VIS minimum shall not be less than 1 500 m and wind limitations are specified in the operations manual;
minimum pilot experience, training and special aerodrome familiarisation requirements are specified and met;
the crossing height over the beginning of the usable length of the declared safe area is 50 ft;
the use of the declared safe area is approved by the State of the aerodrome;
the usable length of the declared safe area does not exceed 90 m;
the width of the declared safe area is not less than twice the runway width or twice the wing span, whichever is greater, centred on the extended runway centre line;
the declared safe area is clear of obstructions or depressions that would endanger an aeroplane undershooting the runway and no mobile object is permitted on the declared safe area while the runway is being used for short landing operations;
the slope of the declared safe area does not exceed 5 % upward nor 2 % downward in the direction of landing; and
[F4reduced required landing distance operations in accordance with CAT.POL.A.255 are prohibited;]
additional conditions, if specified by the competent authority, taking into account aeroplane type characteristics, orographic characteristics in the approach area, available approach aids and missed approach/balked landing considerations.
Textual Amendments
F4 Inserted by Commission Implementing Regulation (EU) 2019/1387 of 1 August 2019 amending Regulation (EU) No 965/2012 as regards requirements for aeroplane landing performance calculations and the standards for assessing the runway surface conditions, update on certain aircraft safety equipment and requirements and operations without holding an extended range operational approval.
at night; or
in IMC, except under special VFR.]
Textual Amendments
F5 Substituted by Commission Regulation (EU) 2017/363 of 1 March 2017 amending Regulation (EU) No 965/2012 as regards the specific approval of single-engined turbine aeroplane operations at night or in instrument meteorological conditions and the approval requirements for the dangerous goods training relating to commercial specialised operations, non-commercial operations of complex motor-powered aircraft and non-commercial specialised operations of complex motor-powered aircraft.
when multiplied by a factor of 1,25, the take-off run available (TORA); or
when stop way and/or clearway is available, the following:
the TORA;
when multiplied by a factor of 1,15, the take-off distance available (TODA); or
when multiplied by a factor of 1,3, the ASDA.
the mass of the aeroplane at the commencement of the take-off run;
the pressure altitude at the aerodrome;
the ambient temperature at the aerodrome;
the runway surface condition and the type of runway surface;
the runway slope in the direction of take-off; and
not more than 50 % of the reported headwind component or not less than 150 % of the reported tailwind component.
the take-off flight path begins at a height of 50 ft above the surface at the end of the take-off distance required by CAT.POL.A.305(b) and ends at a height of 1 500 ft above the surface;
the aeroplane is not banked before the aeroplane has reached a height of 50 ft above the surface, and thereafter the angle of bank does not exceed 15°;
failure of the critical engine occurs at the point on the all engine take-off flight path where visual reference for the purpose of avoiding obstacles is expected to be lost;
the gradient of the take-off flight path from 50 ft to the assumed engine failure height is equal to the average all-engines gradient during climb and transition to the en-route configuration, multiplied by a factor of 0,77; and
the gradient of the take-off flight path from the height reached in accordance with (a)(4) to the end of the take-off flight path is equal to the OEI en-route climb gradient shown in the AFM.
300 m, if the flight is conducted under conditions allowing visual course guidance navigation, or if navigational aids are available enabling the pilot to maintain the intended flight path with the same accuracy; or
600 m, for flights under all other conditions.
600 m, for flights under conditions allowing visual course guidance navigation; or
900 m, for flights under all other conditions.
the mass of the aeroplane at the commencement of the take-off run;
the pressure altitude at the aerodrome;
the ambient temperature at the aerodrome; and
not more than 50 % of the reported headwind component or not less than 150 % of the reported tailwind component.
Textual Amendments
the aeroplane is not flying at an altitude exceeding that at which the rate of climb equals 300 ft per minute with all engines operating within the maximum continuous power conditions specified; and
the en-route gradient with OEI shall be the gross gradient of descent or climb, as appropriate, respectively increased by a gradient of 0,5 %, or decreased by a gradient of 0,5 %.
In the meteorological conditions expected for the flight, and in the event of engine failure, the aeroplane shall be capable of reaching a place at which a safe forced landing can be made, unless the operator is approved by the competent authority in accordance with Annex V (Part-SPA), Subpart L — SINGLE-ENGINED TURBINE AEROPLANE OPERATIONS AT NIGHT OR IN IMC (SET-IMC) and makes use of a risk period.
For the purposes of point (a), it shall be assumed that, at the point of engine failure:
the aeroplane is not flying at an altitude exceeding that at which the rate of climb equals 300 ft per minute, with the engine operating within the maximum continuous power conditions specified; and
the en-route gradient is the gross gradient of descent increased by a gradient of 0,5 %.]
The landing mass of the aeroplane determined in accordance with CAT.POL.A.105(a) shall not exceed the maximum landing mass specified for the altitude and the ambient temperature expected at the estimated time of landing at the destination aerodrome and alternate aerodrome.
The landing mass of the aeroplane determined in accordance with point CAT.POL.A.105(a) for the estimated time of landing at the destination aerodrome and at any alternate aerodrome shall allow a full-stop landing from 50 ft above the threshold within 70 % of the LDA.
By way of derogation from point (a), and where point CAT.POL.A.355 is complied with, the landing mass of the aeroplane determined in accordance with point CAT.POL.A.105(a) for the estimated time of landing at the destination aerodrome shall be such as to allow a full-stop landing from 50 ft above the threshold within 80 % of the LDA.
When determining the landing mass, the operator shall take the following into account:
the altitude at the aerodrome;
not more than 50 % of the headwind component or not less than 150 % of the tailwind component;
the type of runway surface;
the runway slope in the direction of landing.
For steep approach operations, the operator shall use landing distance data factored in accordance with point (a), based on a screen height of less than 60 ft, but not less than 35 ft, and comply with point CAT.POL.A.345.
For short landing operations, the operator shall use landing distance data factored in accordance with point (a), and comply with point CAT.POL.A.350.
For dispatching the aeroplane, the aeroplane shall either:
land on the most favourable runway, in still air;
land on the runway most likely to be assigned considering the probable wind speed and direction, the ground-handling characteristics of the aeroplane and other conditions such as landing aids and terrain.
If the operator is unable to comply with point (f)(2) for the destination aerodrome, the aeroplane shall only be dispatched if an alternate aerodrome is designated that permits full compliance with points (a) to (f).]
When the appropriate weather reports or forecasts indicate that the runway at the estimated time of arrival may be wet, the LDA shall be one of the following distances:
a landing distance provided in the AFM for use on wet runways at time of dispatch, but not less than that required by point CAT.POL.A.330;
if a landing distance is not provided in the AFM for use on wet runways at time of dispatch, at least 115 % of the required landing distance, determined in accordance with point CAT.POL.A.330(a);
a landing distance shorter than that required by point (a)(2), but not less than that required by point CAT.POL.A.330(a), as applicable, if the runway has specific friction improving characteristics and the AFM includes specific additional information for landing distance on that runway type;
by way of derogation from points (a)(1), (a)(2) and (a)(3), for aeroplanes that are approved for reduced landing distance operations under point CAT.POL.A.355, the landing distance determined in accordance with point CAT.POL.A.355(b)(7)(iii).
When the appropriate weather reports or forecasts indicate that the runway at the estimated time of arrival may be contaminated, the landing distance shall not exceed the LDA. The operator shall specify in the operations manual the landing distance data to be applied.]
The operator of a two-engined aeroplane shall fulfil the following take-off and landing climb requirements.
take-off power on each engine;
the landing gear extended, except that if the landing gear can be retracted in not more than seven seconds, it may be assumed to be retracted;
the wing flaps in the take-off position(s); and
a climb speed not less than the greater of 1,1 VMC (minimum control speed on or near ground) and 1,2 VS1 (stall speed or minimum steady flight speed in the landing configuration).
the critical engine inoperative and its propeller in the minimum drag position;
the remaining engine at take-off power;
the landing gear retracted;
the wing flaps in the take-off position(s); and
a climb speed equal to that achieved at 50 ft.
the critical engine inoperative and its propeller in the minimum drag position;
the remaining engine at not more than maximum continuous power;
the landing gear retracted;
the wing flaps retracted; and
a climb speed not less than 1,2 VS1.
not more than the power or thrust that is available eight seconds after initiation of movement of the power controls from the minimum flight idle position;
the landing gear extended;
the wing flaps in the landing position; and
a climb speed equal to VREF (reference landing speed).
the critical engine inoperative and its propeller in the minimum drag position;
the remaining engine at not more than maximum continuous power;
the landing gear retracted;
the wing flaps retracted; and
a climb speed not less than 1,2 VS1.
the AFM states the maximum approved glideslope angle, any other limitations, normal, abnormal or emergency procedures for the steep approach as well as amendments to the field length data when using steep approach criteria; and
for each aerodrome at which steep approach operations are to be conducted:
a suitable glide path reference system, comprising at least a visual glide path indicating system, is available;
weather minima are specified; and
the following items are taken into consideration:
the obstacle situation;
the type of glide path reference and runway guidance;
the minimum visual reference to be required at DH and MDA;
available airborne equipment;
pilot qualification and special aerodrome familiarisation;
AFM limitations and procedures; and
missed approach criteria.
the distance used for the calculation of the permitted landing mass may consist of the usable length of the declared safe area plus the declared LDA;
the use of the declared safe area is approved by the State of the aerodrome;
the declared safe area is clear of obstructions or depressions that would endanger an aeroplane undershooting the runway and no mobile object is permitted on the declared safe area while the runway is being used for short landing operations;
the slope of the declared safe area does not exceed 5 % upward nor 2 % downward slope in the direction of landing;
the usable length of the declared safe area does not exceed 90 m;
the width of the declared safe area is not less than twice the runway width, centred on the extended runway centreline;
the crossing height over the beginning of the usable length of the declared safe area is not less than 50 ft;
weather minima are specified for each runway to be used and are not less than the greater of VFR or NPA minima;
pilot experience, training and special aerodrome familiarisation requirements are specified and met;
additional conditions, if specified by the competent authority, taking into account the aeroplane type characteristics, orographic characteristics in the approach area, available approach aids and missed approach/balked landing considerations.
1,33 for aeroplanes having two engines;
1,25 for aeroplanes having three engines; or
1,18 for aeroplanes having four engines,
shall not exceed the take-off run available (TORA) at the aerodrome at which the take-off is to be made.
the accelerate-stop distance shall not exceed the ASDA;
the take-off distance shall not exceed the take-off distance available (TODA), with a clearway distance not exceeding half of the TORA;
the take-off run shall not exceed the TORA;
a single value of V1 for the rejected and continued take-off shall be used; and
on a wet or contaminated runway the take-off mass shall not exceed that permitted for a take-off on a dry runway under the same conditions.
the pressure altitude at the aerodrome;
the ambient temperature at the aerodrome;
the runway surface condition and the type of runway surface;
the runway slope in the direction of take-off;
not more that 50 % of the reported headwind component or not less than 150 % of the reported tailwind component; and
the loss, if any, of runway length due to alignment of the aeroplane prior to take-off.
Textual Amendments
the mass of the aeroplane at the commencement of the take-off run;
the pressure altitude at the aerodrome;
the ambient temperature at the aerodrome; and
not more than 50 % of the reported headwind component or not less than 150 % of the reported tailwind component.
300 m, if the pilot is able to maintain the required navigational accuracy through the obstacle accountability area; or
600 m, for flights under all other conditions.
600 m, if the pilot is able to maintain the required navigational accuracy through the obstacle accountability area; or
900 m, for flights under all other conditions.
the minimum altitudes for safe flight on each stage of the route to be flown, or of any planned diversion therefrom, specified in or calculated from the information contained in the operations manual relating to the aeroplane; and
the minimum altitudes necessary for compliance with the conditions prescribed in CAT.POL.A.415 and 420, as appropriate.
1 000 ft, when the rate of climb is zero or greater; or
2 000 ft, when the rate of climb is less than zero.
An aeroplane that has three or more engines shall not be away from an aerodrome at which the requirements of point CAT.POL.A.430 for the expected landing mass are met, at any point along the intended track for more than 90 minutes with all engines operating at cruising power or thrust, as appropriate, at standard temperature in still air, unless points (b) to (e) of this point are complied with.
The two-engines-inoperative flight path shall permit the aeroplane to continue the flight, in the expected meteorological conditions, clearing all obstacles within 9,3 km (5 NM) on either side of the intended track by a vertical interval of at least 2 000 ft, to an aerodrome at which the performance requirements applicable for the expected landing mass are met.
The two engines shall be assumed to fail at the most critical point of that portion of the route where the aeroplane is operated for more than 90 minutes, with all engines operating at cruising power or thrust, as appropriate, at standard temperature in still air, away from the aerodrome referred to in point (a).
The expected mass of the aeroplane at the point where the two engines are assumed to fail shall not be less than that which would include sufficient fuel to proceed to an aerodrome where the landing is assumed to be made and to arrive there at an altitude of at least 450 m ( 1 500 ft) directly over the landing area and thereafter to fly for 15 minutes at cruising power or thrust, as appropriate.
The available rate of climb of the aeroplane shall be 150 ft per minute less than that specified.
The width margins provided for in point (b) shall be increased to 18,5 km (10 NM) if the navigational accuracy does not meet at least navigation specification RNAV 5.
Fuel jettisoning is permitted to an extent consistent with reaching the aerodrome with the required fuel reserves in accordance with point (d), if a safe procedure is used.]
The landing mass of the aeroplane determined in accordance with CAT.POL.A.105(a) shall not exceed the maximum landing mass specified in the AFM for the altitude and, if accounted for in the AFM, the ambient temperature expected for the estimated time of landing at the destination aerodrome and alternate aerodrome.
the altitude at the aerodrome;
not more than 50 % of the headwind component or not less than 150 % of the tailwind component;
the type of runway surface; and
[F2the runway slope in the direction of landing.]
the aeroplane will land on the most favourable runway in still air; and
the aeroplane will land on the runway most likely to be assigned considering the probable wind speed and direction, the ground handling characteristics of the aeroplane and other conditions such as landing aids and terrain.
a landing distance provided in the AFM for use on wet runways at time of dispatch, but not less than that required by point CAT.POL.A.430;
if a landing distance is not provided in the AFM for use on wet runways at time of dispatch, at least 115 % of the required landing distance, determined in accordance with point CAT.POL.A.430.]
when operated to/from aerodromes or operating sites located in a congested hostile environment, except when operated to/from a public interest site (PIS) in accordance with CAT.POL.H.225; or
when having an MOPSC of more than 19, except when operated to/from a helideck in performance class 2 under an approval in accordance with CAT.POL.H.305.
at the start of the take-off; or
in the event of in-flight replanning, at the point from which the revised operational flight plan applies,
shall not be greater than the mass at which the applicable requirements of this Section can be complied with for the flight to be undertaken, taking into account expected reductions in mass as the flight proceeds and such fuel jettisoning as is provided for in the relevant requirement.
mass of the helicopter;
the helicopter configuration;
the environmental conditions, in particular:
pressure altitude and temperature;
wind:
except as provided in (C), for take-off, take-off flight path and landing requirements, accountability for wind shall be no more than 50 % of any reported steady headwind component of 5 kt or more;
where take-off and landing with a tailwind component is permitted in the AFM, and in all cases for the take-off flight path, not less than 150 % of any reported tailwind component shall be taken into account; and
where precise wind measuring equipment enables accurate measurement of wind velocity over the point of take-off and landing, wind components in excess of 50 % may be established by the operator, provided that the operator demonstrates to the competent authority that the proximity to the FATO and accuracy enhancements of the wind measuring equipment provide an equivalent level of safety;
the operating techniques; and
the operation of any systems that have an adverse effect on performance.
For operations under VFR:
half of the minimum width defined in the AFM — or, when no width is defined, ‘0,75 × D’, where D is the largest dimension of the helicopter when the rotors are turning;
plus, the greater of ‘0,25 × D’ or ‘3 m’;
plus:
0,10 × distance DR for operations under VFR by day; or
0,15 × distance DR for operations under VFR at night.
For operations under IFR:
‘1,5 D’ or 30 m, whichever is greater, plus:
0,10 × distance DR, for operations under IFR with accurate course guidance;
0,15 × distance DR, for operations under IFR with standard course guidance; or
0,30 × distance DR for operations under IFR without course guidance.
When considering the missed approach flight path, the divergence of the obstacle accountability area only applies after the end of the take-off distance available.
For operations with initial take-off conducted visually and converted to IFR/IMC at a transition point, the criteria required in (1) apply up to the transition point, and the criteria required in (2) apply after the transition point. The transition point cannot be located before the end of the take-off distance required for helicopters (TODRH) operating in performance class 1 or before the defined point after take-off (DPATO) for helicopters operating in performance class 2.
half of the minimum width defined in the AFM or, when no width is defined, ‘0,75 × D’;
plus the greater of ‘0,25 × D’ or ‘3 m’;
plus:
for operations under VFR by day 0,10 × the distance travelled from the back of the FATO, or
for operations under VFR at night 0,15 × the distance travelled from the back of the FATO.
7 × rotor radius (R) for day operations, if it is assured that navigational accuracy can be achieved by reference to suitable visual cues during the climb;
10 × R for night operations, if it is assured that navigational accuracy can be achieved by reference to suitable visual cues during the climb;
300 m if navigational accuracy can be achieved by appropriate navigation aids; or
900 m in all other cases.
Helicopters operated in performance class 1 shall be certified in category A or equivalent as determined by the Agency.
it is possible to reject the take-off and land on the FATO in case of the critical engine failure being recognised at or before the take-off decision point (TDP);
the rejected take-off distance required (RTODRH) does not exceed the rejected take-off distance available (RTODAH); and
the TODRH does not exceed the take-off distance available (TODAH).
Notwithstanding (b)(3), the TODRH may exceed the TODAH if the helicopter, with the critical engine failure recognised at TDP can, when continuing the take-off, clear all obstacles to the end of the TODRH by a vertical margin of not less than 10,7 m (35 ft).
The take-off mass shall be such that the take-off flight path provides a vertical clearance, above all obstacles located in the climb path, of not less than 10,7 m (35 ft) for operations under VFR and 10,7 m (35 ft) + 0,01 × distance DR for operations under IFR. Only obstacles as specified in CAT.POL.H.110 have to be considered.
Where a change of direction of more than 15° is made, adequate allowance shall be made for the effect of bank angle on the ability to comply with the obstacle clearance requirements. This turn is not to be initiated before reaching a height of 61 m (200 ft) above the take-off surface unless it is part of an approved procedure in the AFM.
When it is intended that the flight will be conducted at any time out of sight of the surface, the mass of the helicopter permits a rate of climb of at least 50 ft/minute with the critical engine inoperative at an altitude of at least 300 m (1 000 ft), or 600 m (2 000 ft) in areas of mountainous terrain, above all terrain and obstacles along the route within 9,3 km (5 NM) on either side of the intended track.
When it is intended that the flight will be conducted without the surface in sight, the flight path permits the helicopter to continue flight from the cruising altitude to a height of 300 m (1 000 ft) above a landing site where a landing can be made in accordance with CAT.POL.H.220. The flight path clears vertically, by at least 300 m (1 000 ft) or 600 m (2 000 ft) in areas of mountainous terrain, all terrain and obstacles along the route within 9,3 km (5 NM) on either side of the intended track. Drift-down techniques may be used.
When it is intended that the flight will be conducted in VMC with the surface in sight, the flight path permits the helicopter to continue flight from the cruising altitude to a height of 300 m (1 000 ft) above a landing site where a landing can be made in accordance with CAT.POL.H.220, without flying at any time below the appropriate minimum flight altitude. Obstacles within 900 m on either side of the route need to be considered.
the critical engine is assumed to fail at the most critical point along the route;
account is taken of the effects of winds on the flight path;
fuel jettisoning is planned to take place only to an extent consistent with reaching the aerodrome or operating site with the required fuel reserves and using a safe procedure; and
fuel jettisoning is not planned below 1 000 ft above terrain.
clear all obstacles in the approach path; and
land and stop within the FATO.
the PIS was in use before 1 July 2002;
the size of the PIS or obstacle environment does not permit compliance with the requirements for operation in performance class 1;
the operation is conducted with a helicopter with an MOPSC of six or less;
the operator complies with CAT.POL.H.305(b)(2) and (b)(3);
the helicopter mass does not exceed the maximum mass specified in the AFM for a climb gradient of 8 % in still air at the appropriate take-off safety speed (VTOSS) with the critical engine inoperative and the remaining engines operating at an appropriate power rating; and
the operator has obtained prior approval for the operation from the competent authority. Before such operations take place in another Member State, the operator shall obtain an endorsement from the competent authority of that State.
Helicopters operated in performance class 2 shall be certified in category A or equivalent as determined by the Agency.
conduct a risk assessment, specifying:
the type of helicopter; and
the type of operations;
implement the following set of conditions:
attain and maintain the helicopter/engine modification standard defined by the manufacturer;
conduct the preventive maintenance actions recommended by the helicopter or engine manufacturer;
include take-off and landing procedures in the operations manual, where they do not already exist in the AFM;
specify training for flight crew; and
provide a system for reporting to the manufacturer loss of power, engine shutdown or engine failure events;
and
implement a usage monitoring system (UMS).
the take-off mass shall not exceed the maximum mass specified in the AFM for an all engines operative out of ground effect (AEO OGE) hover in still air with all engines operating at an appropriate power rating; or
for operations from a helideck:
with a helicopter that has an MOPSC of more than 19; or
any helicopter operated from a helideck located in a hostile environment,
the take-off mass shall take into account: the procedure; deck-edge miss and drop down appropriate to the height of the helideck with the critical engine(s) inoperative and the remaining engines operating at an appropriate power rating.
From the defined point after take-off (DPATO) or, as an alternative, no later than 200 ft above the take-off surface, with the critical engine inoperative, the requirements of CAT.POL.H.210(a)(1), (a)(2) and (b) shall be complied with.
The requirement of CAT.POL.H.215 shall be complied with.
a balked landing can be carried out meeting the requirement of CAT.POL.H.315; or
for operations other than those specified in CAT.POL.H.305, the helicopter can perform a safe forced landing.
the landing mass shall not exceed the maximum mass specified in the AFM for an AEO OGE hover in still air with all engines operating at an appropriate power rating; or
for operations to a helideck:
with a helicopter that has an MOPSC of more than 19; or
any helicopter operated to a helideck located in a hostile environment,
the landing mass shall take into account the procedure and drop down appropriate to the height of the helideck with the critical engine inoperative and the remaining engine(s) operating at an appropriate power rating.
when operating in accordance with CAT.POL.H.420; or
for the take-off and landing phase, when operating in accordance with (c).
during take-off, before reaching Vy (speed for best rate of climb) or 200 ft above the take-off surface; or
during landing, below 200 ft above the landing surface.
out of sight of the surface;
at night;
when the ceiling is less than 600 ft; or
when the visibility is less than 800 m.
the MCTOM; or
the maximum take-off mass specified for a hover in ground effect with all engines operating at take-off power, or if conditions are such that a hover in ground effect is not likely to be established, the take-off mass specified for a hover out of ground effect with all engines operating at take-off power.
the maximum certified landing mass; or
the maximum landing mass specified for a hover in ground effect, with all engines operating at take-off power, or if conditions are such that a hover in ground effect is not likely to be established, the landing mass for a hover out of ground effect with all engines operating at take-off power.
only conduct these operations in the areas and under the conditions specified in the approval;
not conduct these operations under a HEMS approval;
substantiate that helicopter limitations, or other justifiable considerations, preclude the use of the appropriate performance criteria; and
be approved in accordance with CAT.POL.H.305(b).
its aircraft is performed under the supervision of qualified personnel; and
traffic load is consistent with the data used for the calculation of the aircraft mass and balance.
Aircraft registration and type;
Flight identification, number and date;
Name of the commander;
Name of the person who prepared the document;
Dry operating mass and the corresponding CG of the aircraft:
for performance class B aeroplanes and for helicopters the CG position may not need to be on the mass and balance documentation if, for example, the load distribution is in accordance with a pre-calculated balance table or if it can be shown that for the planned operations a correct balance can be ensured, whatever the real load is;
Mass of the fuel at take-off and the mass of trip fuel;
Mass of consumables other than fuel, if applicable;
Load components including passengers, baggage, freight and ballast;
Take-off mass, landing mass and zero fuel mass;
Applicable aircraft CG positions; and
The limiting mass and CG values.
The information above shall be available in flight planning documents or mass and balance systems. Some of this information may be contained in other documents readily available for use.
verify the integrity of the output data to ensure that the data are within AFM limitations; and
specify the instructions and procedures for its use in its operations manual.]
Textual Amendments
any last minute change after the completion of the mass and balance documentation is brought to the attention of the commander and entered in the flight planning documents containing the mass and balance documentation;
the maximum last minute change allowed in passenger numbers or hold load is specified; and
new mass and balance documentation is prepared if this maximum number is exceeded.
Textual Amendments
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The Whole Regulation you have selected contains over 200 provisions and might take some time to download. You may also experience some issues with your browser, such as an alert box that a script is taking a long time to run.
Would you like to continue?
Y Rhestrau you have selected contains over 200 provisions and might take some time to download. You may also experience some issues with your browser, such as an alert box that a script is taking a long time to run.
Would you like to continue?
Y Diweddaraf sydd Ar Gael (diwygiedig):Y fersiwn ddiweddaraf sydd ar gael o’r ddeddfwriaeth yn cynnwys newidiadau a wnaed gan ddeddfwriaeth ddilynol ac wedi eu gweithredu gan ein tîm golygyddol. Gellir gweld y newidiadau nad ydym wedi eu gweithredu i’r testun eto yn yr ardal ‘Newidiadau i Ddeddfwriaeth’.
Gwreiddiol (Fel y’i mabwysiadwyd gan yr UE): Mae'r wreiddiol version of the legislation as it stood when it was first adopted in the EU. No changes have been applied to the text.
Pwynt Penodol mewn Amser: This becomes available after navigating to view revised legislation as it stood at a certain point in time via Advanced Features > Show Timeline of Changes or via a point in time advanced search.
Rhychwant ddaearyddol: Indicates the geographical area that this provision applies to. For further information see ‘Frequently Asked Questions’.
Dangos Llinell Amser Newidiadau: See how this legislation has or could change over time. Turning this feature on will show extra navigation options to go to these specific points in time. Return to the latest available version by using the controls above in the What Version box.
Gallwch wneud defnydd o ddogfennau atodol hanfodol a gwybodaeth ar gyfer yr eitem ddeddfwriaeth o’r tab hwn. Yn ddibynnol ar yr eitem ddeddfwriaeth sydd i’w gweld, gallai hyn gynnwys:
Mae’r llinell amser yma yn dangos y fersiynau gwahanol a gymerwyd o EUR-Lex yn ogystal ag unrhyw fersiynau dilynol a grëwyd ar ôl y diwrnod ymadael o ganlyniad i newidiadau a wnaed gan ddeddfwriaeth y Deyrnas Unedig.
Cymerir dyddiadau fersiynau’r UE o ddyddiadau’r dogfennau ar EUR-Lex ac efallai na fyddant yn cyfateb â’r adeg pan ddaeth y newidiadau i rym ar gyfer y ddogfen.
Ar gyfer unrhyw fersiynau a grëwyd ar ôl y diwrnod ymadael o ganlyniad i newidiadau a wnaed gan ddeddfwriaeth y Deyrnas Unedig, bydd y dyddiad yn cyd-fynd â’r dyddiad cynharaf y daeth y newid (e.e. ychwanegiad, diddymiad neu gyfnewidiad) a weithredwyd i rym. Am ragor o wybodaeth gweler ein canllaw i ddeddfwriaeth ddiwygiedig ar Ddeall Deddfwriaeth.
Defnyddiwch y ddewislen hon i agor dogfennau hanfodol sy’n cyd-fynd â’r ddeddfwriaeth a gwybodaeth am yr eitem hon o ddeddfwriaeth. Gan ddibynnu ar yr eitem o ddeddfwriaeth sy’n cael ei gweld gall hyn gynnwys:
liciwch ‘Gweld Mwy’ neu ddewis ‘Rhagor o Adnoddau’ am wybodaeth ychwanegol gan gynnwys