3.Determination of technology specific average standard power valuesU.K.
3.1FanU.K.
For the fan power the standard values shown in Table 1 shall be used depending on mission profile and technology:
Table 1
Mechanical power demand of the fan
Fan drive cluster | Fan control | Fan power consumption [W] | ||||
---|---|---|---|---|---|---|
Long haul | Regional delivery | Urban delivery | Municipal utility | Construction | ||
Crankshaft mounted | Electronically controlled visco clutch | 618 | 671 | 516 | 566 | 1 037 |
Bimetallic controlled visco clutch | 818 | 871 | 676 | 766 | 1 277 | |
Discrete step clutch | 668 | 721 | 616 | 616 | 1 157 | |
On/off cluch | 718 | 771 | 666 | 666 | 1 237 | |
Belt driven or driven via transmission | Electronic controlled visco clutch | 989 | 1 044 | 833 | 933 | 1 478 |
Bimetallic controlled visco clutch | 1 189 | 1 244 | 993 | 1 133 | 1 718 | |
Discrete step clutch | 1 039 | 1 094 | 983 | 983 | 1 598 | |
On/off cluch | 1 089 | 1 144 | 1 033 | 1 033 | 1 678 | |
Hydraulically driven | Variable displacement pump | 938 | 1 155 | 832 | 917 | 1 872 |
Constant displacement pump | 1 200 | 1 400 | 1 000 | 1 100 | 2 300 | |
Electrically driven | Electronically | 700 | 800 | 600 | 600 | 1 400 |
If a new technology within a fan drive cluster (e.g. crankshaft mounted) cannot be found in the list the highest power values within that cluster shall be taken. If a new technology cannot be found in any cluster the values of the worst technology at all shall be taken (hydraulic driven constant displacement pump)
3.2Steering SystemU.K.
For the steering pump power the standard values [W] shown in Table 2 shall be used depending on the application in combination with correction factors:
[F1Table 2
Mechanical power demand of steering pump
Identification of vehicle configuration | Steering power consumption P [W] | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Number of axles | Axle configuration | Chassis configuration | Technically permissible maximum laden mass (tons) | Vehicle group | Long haul | Regional delivery | Urban delivery | Municipal utility | Construction | ||||||||||
U+F | B | S | U + F | B | S | U + F | B | S | U + F | B | S | U + F | B | S | |||||
2 | 4 × 2 | Rigid lorry + (Tractor) | > 7,5 - 10 | 1 | 240 | 20 | 20 | 220 | 20 | 30 | |||||||||
Rigid lorry + (Tractor) | > 10 - 12 | 2 | 340 | 30 | 0 | 290 | 30 | 20 | 260 | 20 | 30 | ||||||||
Rigid lorry + (Tractor) | > 12 - 16 | 3 | 310 | 30 | 30 | 280 | 30 | 40 | |||||||||||
Rigid lorry | > 16 | 4 | 510 | 100 | 0 | 490 | 40 | 40 | 430 | 40 | 50 | 430 | 30 | 50 | 580 | 30 | 70 | ||
Tractor | > 16 | 5 | 600 | 120 | 0 | 540 | 90 | 40 | 640 | 50 | 80 | ||||||||
4 × 4 | Rigid lorry | > 7,5 - 16 | 6 | — | |||||||||||||||
Rigid lorry | > 16 | 7 | — | ||||||||||||||||
Tractor | > 16 | 8 | — | ||||||||||||||||
3 | 6 × 2/2 – 4 | Rigid lorry | all | 9 | 600 | 120 | 0 | 490 | 60 | 40 | 440 | 50 | 50 | 430 | 30 | 50 | 640 | 50 | 80 |
Tractor | all | 10 | 450 | 120 | 0 | 440 | 90 | 40 | 640 | 50 | 80 | ||||||||
6 × 4 | Rigid lorry | all | 11 | 600 | 120 | 0 | 490 | 60 | 40 | 430 | 30 | 50 | 640 | 50 | 80 | ||||
Tractor | all | 12 | 450 | 120 | 0 | 440 | 90 | 40 | 640 | 50 | 80 | ||||||||
6 × 6 | Rigid lorry | all | 13 | — | |||||||||||||||
Tractor | all | 14 | |||||||||||||||||
4 | 8 × 2 | Rigid lorry | all | 15 | — | ||||||||||||||
8 × 4 | Rigid lorry | all | 16 | 640 | 50 | 80 | |||||||||||||
8 × 6/8 × 8 | Rigid lorry | all | 17 | — |
Textual Amendments
F1 Substituted by Commission Regulation (EU) 2019/318 of 19 February 2019 amending Regulation (EU) 2017/2400 and Directive 2007/46/EC of the European Parliament and of the Council as regards the determination of the CO2 emissions and fuel consumption of heavy-duty vehicles (Text with EEA relevance).
where:
=
Unloaded – pumping oil without steering pressure demand
=
Friction – friction in the pump
=
Banking – steer correction due to banking of the road or side wind
=
Steering – steer pump power demand due to cornering and manoeuvring.]
To consider the effect of different technologies, technology depending scaling factors as shown in Table 3 and Table 4 shall be applied.
Table 3
Scaling factors depending on technology
Factor c1 depending on technology | |||
---|---|---|---|
Technology | c1,U + F | c1,B | c1,S |
Fixed displacement | 1 | 1 | 1 |
Fixed displacement with electronical control | 0,95 | 1 | 1 |
Dual displacement | 0,85 | 0,85 | 0,85 |
Variable displacement, mech. controlled | 0,75 | 0,75 | 0,75 |
Variable displacement, elec. controlled | 0,6 | 0,6 | 0,6 |
Electric | 0 | 1,5/ηalt | 1/ηalt |
with ηalt = alternator efficiency = const. = 0,7
[F1If a new technology is not listed, the technology ‘ fixed displacement ’ shall be considered in the simulation tool.]
Table 4
Scaling factor depending on number of steered axles
Factor c2 depending on number of steered axles | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Number of steered axles | Long haul | Regional delivery | Urban delivery | Municipal utility | Construction | ||||||||||
c2,U+F | c2,B | c2,S | c2,U+F | c2,B | c2,S | c2,U+F | c2,B | c2,S | c2,U+F | c2,B | c2,S | c2,U+F | c2,B | c2,S | |
1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
2 | 1 | 0,7 | 0,7 | 1,0 | 0,7 | 0,7 | 1,0 | 0,7 | 0,7 | 1,0 | 0,7 | 0,7 | 1,0 | 0,7 | 0,7 |
3 | 1 | 0,5 | 0,5 | 1,0 | 0,5 | 0,5 | 1,0 | 0,5 | 0,5 | 1,0 | 0,5 | 0,5 | 1,0 | 0,5 | 0,5 |
4 | 1,0 | 0,5 | 0,5 | 1,0 | 0,5 | 0,5 | 1,0 | 0,5 | 0,5 | 1,0 | 0,5 | 0,5 | 1,0 | 0,5 | 0,5 |
The final power demand is calculated by:
If different technologies are used for multi-steered axles, the mean values of the corresponding factors c1 shall be used.
The final power demand is calculated by:
Ptot = Σi(PU + F * mean(c1,U +F ) * (c2i,U + F)) + Σi(PB * mean(c1,B) * (c2i,B)) + Σi(PS * mean(c1,S) * (c2i,S))
where:
=
Total power demand [W]
=
Power demand [W]
=
Correction factor depending on technology
=
Correction factor depending on number of steered axles
=
Unloaded + friction [-]
=
Banking [-]
=
Steering [-]
=
Number of steered axles [-]
3.3Electric systemU.K.
For the electric system power the standard values [W] as shown in Table 5 shall be used depending on the application and technology in combination with the alternator efficiencies:
Table 5
Electrical power demand of electric system
Technologies influencing electric power consumption | Electric power consumption [W] | ||||
---|---|---|---|---|---|
Long haul | Regional delivery | Urban delivery | Municipal utility | Construction | |
Standard technology electric power [W] | 1 200 | 1 000 | 1 000 | 1 000 | 1 000 |
LED main front headlights | – 50 | – 50 | – 50 | – 50 | – 50 |
To derive the mechanical power, an alternator technology dependent efficiency factor as shown in Table 6 shall be applied.
Table 6
Alternator efficiency factor
Alternator (power conversion) technologiesGeneric efficiency values for specific technologies | Efficiency ηalt | ||||
---|---|---|---|---|---|
Long haul | Regional delivery | Urban delivery | Municipal utility | Construction | |
Standard alternator | 0,7 | 0,7 | 0,7 | 0,7 | 0,7 |
[F1If the technology used in the vehicle is not listed, the technology ‘ standard alternator ’ shall be considered in the simulation tool.]
The final power demand is calculated by:
where:
=
Total power demand [W]
=
Electrical power demand [W]
=
Alternator efficiency [-]
3.4Pneumatic systemU.K.
For pneumatic systems working with over pressure the standard power values [W] as shown in Table 7 shall be used depending on application and technology.
Table 7
Mechanical power demand of pneumatic systems (over pressure)
Size of air supply | Technology | Long Haul | Regional Delivery | Urban Delivery | Municipal Utility | Construction |
---|---|---|---|---|---|---|
Pmean | Pmean | Pmean | Pmean | Pmean | ||
[W] | [W] | [W] | [W] | [W] | ||
small displ. ≤ 250 cm3 1 cyl./2 cyl. | Baseline | 1 400 | 1 300 | 1 200 | 1 200 | 1 300 |
+ ESS | – 500 | – 500 | – 400 | – 400 | – 500 | |
+ visco clutch | – 600 | – 600 | – 500 | – 500 | – 600 | |
+ mech. clutch | – 800 | – 700 | – 550 | – 550 | – 700 | |
+ AMS | – 400 | – 400 | – 300 | – 300 | – 400 | |
medium 250 cm3 < displ. ≤ 500 cm3 1 cyl./2 cyl. 1-stage | Baseline | 1 600 | 1 400 | 1 350 | 1 350 | 1 500 |
+ ESS | – 600 | – 500 | – 450 | – 450 | – 600 | |
+ visco clutch | – 750 | – 600 | – 550 | – 550 | – 750 | |
+ mech. clutch | – 1 000 | – 850 | – 800 | – 800 | – 900 | |
+ AMS | – 400 | – 200 | – 200 | – 200 | – 400 | |
medium 250 cm3 < displ. ≤ 500 cm3 1 cyl./2 cyl. 2-stage | Baseline | 2 100 | 1 750 | 1 700 | 1 700 | 2 100 |
+ ESS | – 1 000 | – 700 | – 700 | – 700 | – 1 100 | |
+ visco clutch | – 1 100 | – 900 | – 900 | – 900 | – 1 200 | |
+ mech. clutch | – 1 400 | – 1 100 | – 1 100 | – 1 100 | – 1 300 | |
+ AMS | – 400 | – 200 | – 200 | – 200 | – 500 | |
large displ. > 500 cm3 1 cyl./2 cyl. 1-stage/2-stage | Baseline | 4 300 | 3 600 | 3 500 | 3 500 | 4 100 |
+ ESS | – 2 700 | – 2 300 | – 2 300 | – 2 300 | – 2 600 | |
+ visco clutch | – 3 000 | – 2 500 | – 2 500 | – 2 500 | – 2 900 | |
+ mech. clutch | – 3 500 | – 2 800 | – 2 800 | – 2 800 | – 3 200 | |
+ AMS | – 500 | – 300 | – 200 | – 200 | – 500 |
For pneumatic systems working with vacuum (negative pressure) the standard power values [W] as shown in Table 8 shall be used.
Table 8
Mechanical power demand of pneumatic systems (vacuum pressure)
Long Haul | Regional Delivery | Urban Delivery | Municipal Utility | Construction | |
---|---|---|---|---|---|
Pmean | Pmean | Pmean | Pmean | Pmean | |
[W] | [W] | [W] | [W] | [W] | |
Vacuum pump | 190 | 160 | 130 | 130 | 130 |
Fuel saving technologies can be considered by subtracting the corresponding power demand from the power demand of the baseline compressor.
The following combinations of technologies are not considered:
ESS and clutches
Visco clutch and mechanical clutch
In case of a two-stage compressor, the displacement of the first stage shall be used to describe the size of the air compressor system
3.5Air Conditioning systemU.K.
For vehicles having an air conditioning system, the standard values [W] as shown in Table 9 shall be used depending on the application.
[F1Table 9
Mechanical power demand of AC system
Identification of vehicle configuration | AC power consumption [W] | ||||||||
---|---|---|---|---|---|---|---|---|---|
Number of axles | Axle configuration | Chassis configuration | Technically permissible maximum laden mass (tons) | Vehicle group | Long haul | Regional delivery | Urban delivery | Municipal utility | Construction |
2 | 4 × 2 | Rigid lorry + (Tractor) | > 7,5 - 10 | 1 | 150 | 150 | |||
Rigid lorry + (Tractor) | > 10 - 12 | 2 | 200 | 200 | 150 | ||||
Rigid lorry + (Tractor) | > 12 - 16 | 3 | 200 | 150 | |||||
Rigid lorry | > 16 | 4 | 350 | 200 | 150 | 300 | 200 | ||
Tractor | > 16 | 5 | 350 | 200 | 200 | ||||
4 × 4 | Rigid lorry | > 7,5 - 16 | 6 | — | |||||
Rigid lorry | > 16 | 7 | — | ||||||
Tractor | > 16 | 8 | — | ||||||
3 | 6 × 2/2 – 4 | Rigid lorry | all | 9 | 350 | 200 | 150 | 300 | 200 |
Tractor | all | 10 | 350 | 200 | 200 | ||||
6 × 4 | Rigid lorry | all | 11 | 350 | 200 | 300 | 200 | ||
Tractor | all | 12 | 350 | 200 | 200 | ||||
6 × 6 | Rigid lorry | all | 13 | — | |||||
Tractor | all | 14 | |||||||
4 | 8 × 2 | Rigid lorry | all | 15 | — | ||||
8 × 4 | Rigid lorry | all | 16 | 200 | |||||
8 × 6/8 × 8 | Rigid lorry | all | 17 | —] |
3.6Transmission Power Take-Off (PTO)U.K.
For vehicles with PTO and/or PTO drive mechanism installed on the transmission, the power consumption shall be considered by determined standard values. The corresponding standard values represent these power losses in usual drive mode when the PTO is switched off/disengaged. [F1Application related power consumptions at engaged PTO are added by the simulation tool and are not described in the following.]
Table 10
Mechanical power demand of switched off/disengaged power take-off
Design variants regarding power losses (in comparison to a transmission without PTO and / or PTO drive mechanism) | |||
---|---|---|---|
Additional drag loss relevant parts | PTO incl. drive mechanism | only PTO drive mechanism | |
Shafts / gear wheels | Other elements | Power loss [W] | Power loss [W] |
only one engaged gearwheel positioned above the specified oil level (no additional gearmesh) | — | — | 0 |
only the drive shaft of the PTO | tooth clutch (incl. synchroniser) or sliding gearwheel | 50 | 50 |
only the drive shaft of the PTO | multi-disc clutch | 1 000 | 1 000 |
only the drive shaft of the PTO | multi-disc clutch and oil pump | 2 000 | 2 000 |
drive shaft and/or up to 2 engaged gearwheels | tooth clutch (incl. synchroniser) or sliding gearwheel | 300 | 300 |
drive shaft and/or up to 2 engaged gearwheels | multi-disc clutch | 1 500 | 1 500 |
drive shaft and/or up to 2 engaged gearwheels | multi-disc clutch and oil pump | 3 000 | 3 000 |
drive shaft and/or more than 2 engaged gearwheels | tooth clutch (incl. synchroniser) or sliding gearwheel | 600 | 600 |
drive shaft and/or more than 2 engaged gearwheels | multi-disc clutch | 2 000 | 2 000 |
drive shaft and/or more than 2 engaged gearwheels | multi-disc clutch and oil pump | 4 000 | 4 000 |