- Latest available (Revised)
- Point in Time (31/12/2020)
- Original (As adopted by EU)
Council Directive 98/57/EC of 20 July 1998 on the control of Ralstonia solanacearum (Smith) Yabuuchi et al.
When the UK left the EU, legislation.gov.uk published EU legislation that had been published by the EU up to IP completion day (31 December 2020 11.00 p.m.). On legislation.gov.uk, these items of legislation are kept up-to-date with any amendments made by the UK since then.
Legislation.gov.uk publishes the UK version. EUR-Lex publishes the EU version. The EU Exit Web Archive holds a snapshot of EUR-Lex’s version from IP completion day (31 December 2020 11.00 p.m.).
EU Directives are published on this site to aid cross referencing from UK legislation. Since IP completion day (31 December 2020 11.00 p.m.) no amendments have been applied to this version.
Textual Amendments
NB: Preliminary testing should permit reproducible detection of 10 3 to 10 4 cells of R. solanacearum per ml of sample extract. U.K.
Preliminary testing should also show no false positive results with a panel of selected bacterial strains (see Appendix 3).
Forward primer OLI-1 | 5′-GGG GGT AGC TTG CTA CCT GCC-3′ |
Reverse primer Y-2 | 5′-CCC ACT GCT GCC TCC CGT AGG AGT-3′ |
Expected amplicon size from R. solanacearum template DNA = 288 bp
a Method was validated using Taq polymerase from Perkin Elmer (AmpliTaq) and Gibco BRL. | ||
Reagent | Quantity per reaction | Final concentration |
---|---|---|
Sterile UPW | 17,65 µl | |
10X PCR buffer a (15 mM MgCl 2 ) | 2,5 µl | 1X (1,5 mM MgCl 2 ) |
dNTP mix (20 mM) | 0,25 µl | 0,2 mM |
Primer OLI-1 (20 µM) | 1,25 µl | 1µM |
Primer Y-2 (20 µM) | 1,25 µl | 1µM |
Taq polymerase (5U/µl) a | 0,1 µl | 0,5 U |
Sample volume | 2,0 µl | |
Total volume | 25 µl |
Run the following programme:
1 cycle of: | (i) | 2 minutes at 96 °C (denaturation of template DNA) |
35 cycles of: | (ii) | 20 seconds at 94 °C (denaturation of template DNA) |
(iii) | 20 seconds at 68 °C (annealing of primers) | |
(iv) | 30 seconds at 72 °C (extension of copy) | |
1 cycle of: | (v) | 10 minutes at 72 °C (final extension) |
(vi) | hold at 4 °C. |
NB: This programme was optimised for use with a Perkin Elmer 9600 thermal cycler. Modification of the duration steps of cycles (ii), (iii) and (iv) may be required for use with other models. U.K.
PCR products amplified from R. solanacearum DNA produce a distinctive restriction fragment length polymorphism with enzyme Ava II after incubation at 37 °C.
Forward primer Ps-1 | 5′- agt cga acg gca gcg ggg g -3′ |
Reverse primer Ps-2 | 5′- ggg gat ttc aca tcg gtc ttg ca -3′ |
Expected amplicon size from R. solanacearum template DNA = 553 bp.
a Methods were validated using Taq polymerase from Perkin Elmer (AmpliTaq) and Gibco BRL. | ||
N.B. Originally optimised for MJ Research PTC 200 thermocycler with Gibco Taq Polymerase. Perkin Elmer AmpliTaq and buffer can also be used at the same concentrations. | ||
Reagent | Quantity per reaction | Final concentration |
---|---|---|
Sterile UPW | 16,025 µl | |
10X PCR buffer a | 2,5 µl | 1X (1,5 mM MgCl 2 ) |
BSA (fraction V) (10 %) | 0,25 µl | 0,1 % |
d-nTP mix (20 mM) | 0,125 µl | 0,1 mM |
Primer Ps-1 (10 µM) | 0,5 µl | 0,2 µM |
Primer Ps-2 (10 µM) | 0,5 µl | 0,2 µM |
Taq polymerase (5U/µl) a | 0,1 µl | 0,5 U |
Sample volume | 5,0 µl | |
Total volume: | 25,0 µl |
Run the following programme:
1 cycle of: | (i) | 5 minutes at 95 °C (denaturation of template DNA) |
35 cycles of: | (ii) | 30 seconds at 95 °C (denaturation of template DNA) |
(iii) | 30 seconds at 68 °C (annealing of primers) | |
(iv) | 45 seconds at 72 °C (extension of copy) | |
1 cycle of: | (v) | 5 minutes at 72 °C (final extension) |
(vi) | hold at 4 °C. |
NB: This programme is optimised for use with an MJ Research PTC 200 thermal cycler. Modification of the duration steps of cycles (ii), (iii) and (iv) may be required for use with other models. U.K.
PCR products amplified from R. solanacearum DNA produce a distinctive restriction fragment length polymorphism with enzyme Taq I after incubation at 65 °C for 30 minutes. The restriction fragments obtained from R. solanacearum -specific fragment are 457 bp and 96 bp in size.
Forward primer RS-1-F | 5′- ACT AAC GAA GCA GAG ATG CAT TA -3′ |
Reverse primer RS-1-R | 5′- CCC AGT CAC GGC AGA GAC T -3′ |
Forward primer NS-5-F | 5′- AAC TTA AAG GAA TTG ACG GAA G -3′ |
Reverse primer NS-6-R | 5′- GCA TCA CAG ACC TGT TAT TGC CTC -3′ |
Expected amplicon size from R. solanacearum template DNA = 718 bp (RS-primer set)
Expected amplicon size from the 18S rRNA internal PCR control = 310 bp (NS-primer set).
a Methods were validated using Taq polymerase from Perkin Elmer (AmpliTaq) and Gibco BRL. | ||
b Concentration of primers NS-5-F and NS-6-R were optimised for potato heel end core extraction using the homogenisation method and DNA purification according to Pastrik (2000) (see Section VI.A.6.1.a.). Re-optimisation of reagent concentrations will be required if extraction by shaking or other DNA isolation methods are used. | ||
Reagent | Quantity per reaction | Final concentration |
---|---|---|
Sterile UPW | 12,625 µl | |
10X PCR buffer a (15 mM MgCl 2 ) | 2,5 µl | 1X (1,5 mM MgCl 2 ) |
BSA (fraction V) (10 %) | 0,25 µl | 0,1 % |
d-nTP mix (20 mM) | 0,125 µl | 0,1 mM |
Primer RS-1-F (10 µM) | 2,0 µl | 0,8 µM |
Primer RS-1-R (10 µM) | 2,0 µl | 0,8 µM |
Primer NS-5-F (10 µM) b | 0,15 µl | 0,06 µM |
Primer NS-6-R (10 µM) b | 0,15 µl | 0,06 µM |
Taq polymerase (5 U/µl) a | 0,2 µl | 1,0 U |
Sample volume | 5,0 µl | |
Total volume: | 25,0 µl |
Run the following programme:
1 cycle of: | (i) | 5 minutes at 95 °C (denaturation of template DNA) |
35 cycles of: | (ii) | 30 seconds at 95 °C (denaturation of template DNA) |
(iii) | 30 seconds at 58 °C (annealing of primers) | |
(iv) | 45 seconds at 72 °C (extension of copy) | |
1 cycle of: | (v) | 5 minutes at 72 °C (final extension) |
(vi) | hold at 4 °C. |
NB: This programme is optimised for use with an MJ Research PTC 200 thermal cycler. Modification of the duration steps of cycles (ii), (iii) and (iv) may be required for use with other models. U.K.
PCR products amplified from R. solanacearum DNA produce a distinctive restriction fragment length polymorphism with enzyme Bsm I or an Isoschizomere (e.g. Mva 1269 I) after incubation at 65 °C for 30 minutes.
Forward primer Rs-1-F | 5′- ACT AAC GAA GCA GAG ATG CAT TA -3′ |
Reverse primer Rs-1-R | 5′- CCC AGT CAC GGC AGA GAC T -3′ |
Reverse primer Rs-3-R | 5′- TTC ACG GCA AGA TCG CTC -3′ |
Expected amplicon size from R. solanacearum template DNA:
with Rs-1-F/Rs-1-R = 718 bp
with Rs-1-F/Rs-3-R = 716 bp.
Biovar 1/2-specific PCR
a Methods have been validated using Taq polymerase from Perkin Elmer (AmpliTaq) and Gibco BRL. | ||
Reagent | Quantity per reaction | Final concentration |
---|---|---|
Sterile UPW | 12,925 µl | |
10X PCR Buffer a | 2,5 µl | 1X (1,5 mM MgCl 2 ) |
BSA (fraction V) (10 %) | 0,25 µl | 0,1 % |
d-NTP mix (20mM) | 0,125 µl | 0,1 mM |
Primer Rs-1-F (10 µM) | 2 µl | 0,8 µM |
Primer Rs-1-R (10 µM) | 2 µl | 0,8 µM |
Taq polymerase (5U/µl) a | 0,2 µl | 1 U |
Sample volume | 5,0 µl | |
Total volume | 25,0 µl |
Biovar 3/4/5-specific PCR
a Methods have been validated using Taq polymerase from Perkin Elmer (AmpliTaq) and Gibco BRL. | ||
Reagent | Quantity per reaction | Final concentration |
---|---|---|
Sterile UPW | 14,925 µl | |
10X PCR Buffer a | 2,5 µl | 1X (1,5 mM MgCl 2 ) |
BSA (fraction V) (10 %) | 0,25 µl | 0,1 % |
dNTP mix (20 mM) | 0,125 µl | 0,1 mM |
Primer Rs-1-F (10 µM) | 1 µl | 0,4 µM |
Primer Rs-3-R (10 µM) | 1 µl | 0,4 µM |
Taq polymerase (5 U/µl) a | 0,2 µl | 1 U |
Sample volume | 5,0 µl | |
Total volume | 25,0 µl |
Run the following programme for both biovar 1/2- and biovar 3/4/5-specific reactions:
1 cycle of: | (i) | 5 minutes at 95 °C (denaturation of template DNA) |
35 cycles of: | (ii) | 30 seconds at 95 °C (denaturation of template DNA) |
(iii) | 30 seconds at 58 °C (annealing of primers) | |
(iv) | 45 seconds at 72 °C (extension of copy) | |
1 cycle of: | (v) | 5 minutes at 72 °C (final extension) |
(vi) | hold at 4 °C. |
NB: This programme was optimised for use with an MJ Research PTC 200 thermal cycler. Modification of the duration steps of cycles (ii), (iii) and (iv) may be required for use with other models. U.K.
PCR products amplified from R. solanacearum DNA using primers Rs-1-F and Rs-1-R produce a distinctive restriction fragment length polymorphism with enzyme Bsm I or an Isoschizomere (e.g. Mva 1269 I) after incubation at 65 °C for 30 minutes. PCR products amplified from R. solanacearum DNA using primers Rs-1-F and Rs-3-R have no restriction sites.
Bromphenol blue | 5 g |
Distilled water (bidest) | 50 ml |
Glycerol (86 %) | 3,5 ml |
Bromphenol blue (5,1) | 300 µl |
Distilled Water (bidest) | 6,2 ml |
Tris buffer | 48,40 g |
Glacial acetic acid | 11,42 ml |
EDTA (disodium salt) | 3,72 g |
Distilled water | 1,00 L |
Dilute to 1X before use.
Also commercially available (e.g. Invitrogen or equivalent).]
The Whole Directive you have selected contains over 200 provisions and might take some time to download. You may also experience some issues with your browser, such as an alert box that a script is taking a long time to run.
Would you like to continue?
The Schedules you have selected contains over 200 provisions and might take some time to download. You may also experience some issues with your browser, such as an alert box that a script is taking a long time to run.
Would you like to continue?
Latest Available (revised):The latest available updated version of the legislation incorporating changes made by subsequent legislation and applied by our editorial team. Changes we have not yet applied to the text, can be found in the ‘Changes to Legislation’ area.
Original (As adopted by EU): The original version of the legislation as it stood when it was first adopted in the EU. No changes have been applied to the text.
Point in Time: This becomes available after navigating to view revised legislation as it stood at a certain point in time via Advanced Features > Show Timeline of Changes or via a point in time advanced search.
Geographical Extent: Indicates the geographical area that this provision applies to. For further information see ‘Frequently Asked Questions’.
Show Timeline of Changes: See how this legislation has or could change over time. Turning this feature on will show extra navigation options to go to these specific points in time. Return to the latest available version by using the controls above in the What Version box.
Access essential accompanying documents and information for this legislation item from this tab. Dependent on the legislation item being viewed this may include:
This timeline shows the different versions taken from EUR-Lex before exit day and during the implementation period as well as any subsequent versions created after the implementation period as a result of changes made by UK legislation.
The dates for the EU versions are taken from the document dates on EUR-Lex and may not always coincide with when the changes came into force for the document.
For any versions created after the implementation period as a result of changes made by UK legislation the date will coincide with the earliest date on which the change (e.g an insertion, a repeal or a substitution) that was applied came into force. For further information see our guide to revised legislation on Understanding Legislation.
Use this menu to access essential accompanying documents and information for this legislation item. Dependent on the legislation item being viewed this may include:
Click 'View More' or select 'More Resources' tab for additional information including: