ANNEX INon-coherent optical radiation

The biophysically relevant exposure values to optical radiation can be determined with the formulae below. The formulae to be used depend on the range of radiation emitted by the source and the results should be compared with the corresponding exposure limit values indicated in Table 1.1. More than one exposure value and corresponding exposure limit can be relevant for a given source of optical radiation.

Numbering (a) to (o) refers to corresponding rows of Table 1.1.

(a)

Heff=0tλ=180 nmλ=400 nmEλλ,t×Sλ××dtmath

(Heff is only relevant in the range 180 to 400 nm)

(b)

HUVA=0tλ=315 nmλ=400 nmEλλ,t××dtmath

(HUVA is only relevant in the range 315 to 400 nm)

(c), (d)

LB=λ=300 nmλ=700 nmLλλ×Bλ×math

(LB is only relevant in the range 300 to 700 nm)

(e), (f)

EB=λ=300 nmλ=700 nmEλλ×Bλ×math

(EB is only relevant in the range 300 to 700 nm)

(g) to (l)

LR=λ1λ2Lλλ×Rλ×math

(See Table 1.1 for appropriate values of λ1 and λ2)

(m), (n)

EIR=λ=780 nmλ=3000 nmEλλ×math

(EIR is only relevant in the range 780 to 3 000 nm)

(o)

Hskin=0tλ=380 nmλ=3000 nmEλλ,t××dtmath

(Hskin is only relevant in the range 380 to 3 000 nm)

For the purposes of this Directive, the formulae above can be replaced by the following expressions and the use of discrete values as set out in the following tables:

(a)

Eeff=λ=180 nmλ=400 nmEλ×Sλ×Δλmath
and Heff=Eeff×Δtmath

(b)

EUVA=λ=315 nmλ=400 nmEλ×Δλmath
and HUVA=EUVA×Δtmath

(c), (d)

LB=λ=300 nmλ=700 nmLλ×Bλ×Δλmath

(e), (f)

EB=λ=300 nmλ=700 nmEλ×Bλ×Δλmath

(g) to (l)

LR=λ1λ2Lλ×Rλ×Δλmath

(See Table 1.1 for appropriate values of λ1 and λ2)

(m), (n)

EIR=λ=780 nmλ=3000 nmEλ×Δλmath

(o)

Eskin=λ=380 nmλ=3000 nmEλ×Δλmath
and Hskin=Eskin×Δtmath

Notes:

Eλ (λ,t), Eλ

spectral irradiance or spectral power density: the radiant power incident per unit area upon a surface, expressed in watts per square metre per nanometre [W m-2 nm-1]; values of Eλ (λ, t) and Eλ come from measurements or may be provided by the manufacturer of the equipment;

Eeff

effective irradiance (UV range): calculated irradiance within the UV wavelength range 180 to 400 nm spectrally weighted by S (λ), expressed in watts per square metre [W m-2];

H

radiant exposure: the time integral of the irradiance, expressed in joules per square metre [J m-2];

Heff

effective radiant exposure: radiant exposure spectrally weighted by S (λ), expressed in joules per square metre [J m-2];

EUVA

total irradiance (UVA): calculated irradiance within the UVA wavelength range 315 to 400 nm, expressed in watts per square metre [W m-2];

HUVA

radiant exposure: the time and wavelength integral or sum of the irradiance within the UVA wavelength range 315 to 400 nm, expressed in joules per square metre [J m-2];

S (λ)

spectral weighting taking into account the wavelength dependence of the health effects of UV radiation on eye and skin, (Table 1.2) [dimensionless];

t, Δt

time, duration of the exposure, expressed in seconds [s];

λ

wavelength, expressed in nanometres [nm];

Δ λ

bandwidth, expressed in nanometres [nm], of the calculation or measurement intervals;

Lλ (λ), Lλ

spectral radiance of the source expressed in watts per square metre per steradian per nanometre [W m-2 sr -1 nm-1];

R (λ)

spectral weighting taking into account the wavelength dependence of the thermal injury caused to the eye by visible and IRA radiation (Table 1.3) [dimensionless];

LR

effective radiance(thermal injury): calculated radiance spectrally weighted by R (λ) expressed in watts per square metre per steradian [W m-2 sr -1];

B (λ)

spectral weighting taking into account the wavelength dependence of the photochemical injury caused to the eye by blue light radiation (Table 1.3) [dimensionless];

LB

effective radiance(blue light): calculated radiance spectrally weighted by B (λ), expressed in watts per square metre per steradian [W m-2 sr -1];

EB

effective irradiance (blue light): calculated irradiance spectrally weighted by B (λ) expressed in watts per square metre [W m-2];

EIR

total irradiance (thermal injury): calculated irradiance within the infrared wavelength range 780 nm to 3 000 nm expressed in watts per square metre [W m-2];

Eskin

total irradiance (visible, IRA and IRB): calculated irradiance within the visible and infrared wavelength range 380 nm to 3 000 nm, expressed in watts per square metre [W m-2];

Hskin

radiant exposure: the time and wavelength integral or sum of the irradiance within the visible and infrared wavelength range 380 to 3 000 nm, expressed in joules per square metre (J m-2);

α

angular subtense: the angle subtended by an apparent source, as viewed at a point in space, expressed in milliradians (mrad). Apparent source is the real or virtual object that forms the smallest possible retinal image.

Table 1.1Exposure limit values for non-coherent optical radiation

Index

Wavelength nm

Exposure limit value

Units

Comment

Part of the body

Hazard

a.

180-400

(UVA, UVB and UVC)

Heff = 30

Daily value 8 hours

[J m-2]

eye

cornea

conjunctiva

lens

skin

photokeratitis

conjunctivitis

cataractogenesis

erythema

elastosis

skin cancer

b.

315-400

(UVA)

HUVA = 104

Daily value 8 hours

[J m-2]

eye lens

cataractogenesis

c.

300-700

(Blue light) see note1

LB=106tmath

for t ≤ 10 000 s

LB :[W m-2 sr-1]

t: [seconds]

for α ≥ 11 mrad

eye retina

photoretinitis

d.

300-700

(Blue light)

see note 1

LB = 100

for t > 10 000 s

[W m-2 sr-1]

e.

300-700

(Blue light)

see note 1

EB=100tmath

for t ≤ 10 000 s

EB: [W m-2]

t: [seconds]

for α < 11 mrad

see note 2

f.

300-700

(Blue light)

see note 1

EB = 0,01

t >10 000 s

[W m-2]

g.

380-1 400

(Visible and IRA)

LR=2,8×107Cαmath

for t >10 s

[W m-2 sr-1]

Cα = 1,7 for

α ≤ 1,7 mrad

Cα = α for

1,7 ≤ α ≤ 100 mrad

Cα = 100 for

α > 100 mrad

λ1= 380; λ2= 1 400

eye retina

retinal burn

h.

380-1 400

(Visible and IRA)

LR=5×107Cαt0,25math

for 10 μs ≤ t ≤ 10 s

LR:[W m-2 sr-1]

t: [seconds]

i.

380-1 400

(Visible and IRA)

LR=8,89×108Cαmath

for t <10 μs

[W m-2 sr-1]

j.

780-1 400

(IRA)

LR=6×106Cαmath

for t > 10 s

[W m-2 sr-1]

Cα = 11 for

α ≤ 11 mrad

Cα = α for

11≤ α ≤ 100 mrad

Cα = 100 for

α > 100 mrad

(measurement field-of-view: 11 mrad)

λ1= 780; λ2= 1 400

eye retina

retinal burn

k.

780-1 400

(IRA)

LR=5×107Cαt0,25math

for 10 μs ≤ t ≤ 10 s

LR: [W m-2 sr-1]

t: [seconds]

l.

780-1 400

(IRA)

LR=8,89×108Cαmath

for t < 10 μs

[W m-2 sr-1]

m.

780-3 000

(IRA and IRB)

EIR = 18 000 t-0,75

for t ≤ 1 000 s

E: [W m-2]

t: [seconds]

eye

cornea

lens

corneal burn

cataractogenesis

n.

780-3 000

(IRA and IRB)

EIR = 100

for t > 1 000 s

[W m-2]

o.

380-3 000

(Visible, IRA

and IRB)

Hskin = 20 000 t0,25

for t < 10 s

H: [J m-2]

t: [seconds]

skin

burn

Note 1:

The range of 300 to 700 nm covers parts of UVB, all UVA and most of visible radiation; however, the associated hazard is commonly referred to as ‘blue light’ hazard. Blue light strictly speaking covers only the range of approximately 400 to 490 nm.

Note 2:

For steady fixation of very small sources with an angular subtense < 11 mrad, LB can be converted to EB. This normally applies only for ophthalmic instruments or a stabilized eye during anaesthesia. The maximum ‘stare time’ is found by: tmax = 100/EB with EB expressed in W m-2. Due to eye movements during normal visual tasks this does not exceed 100 s.

Table 1.2S (λ) [dimensionless], 180 nm to 400 nm

λ in nm

S (λ)

λ in nm

S (λ)

λ in nm

S (λ)

λ in nm

S (λ)

λ in nm

S (λ)

180

0,012

228

0,1737

276

0,9434

324

0,00052

372

0,000086

181

0,0126

229

0,1819

277

0,9272

325

0,0005

373

0,000083

182

0,0132

230

0,19

278

0,9112

326

0,000479

374

0,00008

183

0,0138

231

0,1995

279

0,8954

327

0,000459

375

0,000077

184

0,0144

232

0,2089

280

0,88

328

0,00044

376

0,000074

185

0,0151

233

0,2188

281

0,8568

329

0,000425

377

0,000072

186

0,0158

234

0,2292

282

0,8342

330

0,00041

378

0,000069

187

0,0166

235

0,24

283

0,8122

331

0,000396

379

0,000066

188

0,0173

236

0,251

284

0,7908

332

0,000383

380

0,000064

189

0,0181

237

0,2624

285

0,77

333

0,00037

381

0,000062

190

0,019

238

0,2744

286

0,742

334

0,000355

382

0,000059

191

0,0199

239

0,2869

287

0,7151

335

0,00034

383

0,000057

192

0,0208

240

0,3

288

0,6891

336

0,000327

384

0,000055

193

0,0218

241

0,3111

289

0,6641

337

0,000315

385

0,000053

194

0,0228

242

0,3227

290

0,64

338

0,000303

386

0,000051

195

0,0239

243

0,3347

291

0,6186

339

0,000291

387

0,000049

196

0,025

244

0,3471

292

0,598

340

0,00028

388

0,000047

197

0,0262

245

0,36

293

0,578

341

0,000271

389

0,000046

198

0,0274

246

0,373

294

0,5587

342

0,000263

390

0,000044

199

0,0287

247

0,3865

295

0,54

343

0,000255

391

0,000042

200

0,03

248

0,4005

296

0,4984

344

0,000248

392

0,000041

201

0,0334

249

0,415

297

0,46

345

0,00024

393

0,000039

202

0,0371

250

0,43

298

0,3989

346

0,000231

394

0,000037

203

0,0412

251

0,4465

299

0,3459

347

0,000223

395

0,000036

204

0,0459

252

0,4637

300

0,3

348

0,000215

396

0,000035

205

0,051

253

0,4815

301

0,221

349

0,000207

397

0,000033

206

0,0551

254

0,5

302

0,1629

350

0,0002

398

0,000032

207

0,0595

255

0,52

303

0,12

351

0,000191

399

0,000031

208

0,0643

256

0,5437

304

0,0849

352

0,000183

400

0,00003

209

0,0694

257

0,5685

305

0,06

353

0,000175

210

0,075

258

0,5945

306

0,0454

354

0,000167

211

0,0786

259

0,6216

307

0,0344

355

0,00016

212

0,0824

260

0,65

308

0,026

356

0,000153

213

0,0864

261

0,6792

309

0,0197

357

0,000147

214

0,0906

262

0,7098

310

0,015

358

0,000141

215

0,095

263

0,7417

311

0,0111

359

0,000136

216

0,0995

264

0,7751

312

0,0081

360

0,00013

217

0,1043

265

0,81

313

0,006

361

0,000126

218

0,1093

266

0,8449

314

0,0042

362

0,000122

219

0,1145

267

0,8812

315

0,003

363

0,000118

220

0,12

268

0,9192

316

0,0024

364

0,000114

221

0,1257

269

0,9587

317

0,002

365

0,00011

222

0,1316

270

1,0

318

0,0016

366

0,000106

223

0,1378

271

0,9919

319

0,0012

367

0,000103

224

0,1444

272

0,9838

320

0,001

368

0,000099

225

0,15

273

0,9758

321

0,000819

369

0,000096

226

0,1583

274

0,9679

322

0,00067

370

0,000093

227

0,1658

275

0,96

323

0,00054

371

0,00009

Table 1.3B (λ), R (λ) [dimensionless], 380 nm to 1 400 nm

λ in nm

B (λ)

R (λ)

300 ≤ λ < 380

0,01

380

0,01

0,1

385

0,013

0,13

390

0,025

0,25

395

0,05

0,5

400

0,1

1

405

0,2

2

410

0,4

4

415

0,8

8

420

0,9

9

425

0,95

9,5

430

0,98

9,8

435

1

10

440

1

10

445

0,97

9,7

450

0,94

9,4

455

0,9

9

460

0,8

8

465

0,7

7

470

0,62

6,2

475

0,55

5,5

480

0,45

4,5

485

0,32

3,2

490

0,22

2,2

495

0,16

1,6

500

0,1

1

500 < λ ≤ 600

100,02·(450 - λ)

1

600 < λ ≤ 700

0,001

1

700 < λ ≤ 1 050

100,002 · (700 - λ)

1 050 < λ ≤ 1 150

0,2

1 150 < λ ≤ 1 200

0,2· 100,02·(1 150 - λ)

1 200 < λ ≤ 1 400

0,02