- Latest available (Revised)
- Point in Time (31/12/2020)
- Original (As adopted by EU)
Commission Directive 2006/56/EC of 12 June 2006 amending the Annexes to Council Directive 93/85/EEC on the control of potato ring rot
When the UK left the EU, legislation.gov.uk published EU legislation that had been published by the EU up to IP completion day (31 December 2020 11.00 p.m.). On legislation.gov.uk, these items of legislation are kept up-to-date with any amendments made by the UK since then.
Legislation.gov.uk publishes the UK version. EUR-Lex publishes the EU version. The EU Exit Web Archive holds a snapshot of EUR-Lex’s version from IP completion day (31 December 2020 11.00 p.m.).
EU Directives are published on this site to aid cross referencing from UK legislation. Since IP completion day (31 December 2020 11.00 p.m.) no amendments have been applied to this version.
When the PCR test is used as the principal screening test and found to be positive, the IF test must be performed as a second compulsory screening test. When the PCR test is used as the second screening test and found to be positive, further testing according to the flow scheme is required to complete the diagnosis.
Full exploitation of this method as principal screening test is only recommended when specialised expertise has been acquired.
Preliminary testing with this method should permit reproducible detection of 103 to 104 cells of C. m. subsp. sepedonicus per ml added to sample extracts which previously tested negative. Optimisation experiments may be required to achieve maximum levels of sensitivity and specificity in all laboratories.
Use validated PCR reagents and protocols. Preferably select a method with an internal control.
Use appropriate precautions to avoid contamination of sample with target DNA. The PCR test should be performed by experienced technicians, in dedicated molecular biology laboratories, in order to minimise the possibility of contamination with target DNA.
Negative controls (for DNA extraction and PCR procedures) should always be handled as final samples in the procedure, to make evident whether any carry over of DNA has occurred.
The following negative controls should be included in the PCR test:
sample extract that previously tested negative for C. m. subsp. Sepedonicus,
buffer controls used for extracting the bacterium and the DNA from the sample,
PCR-reaction mix.
The following positive controls should be included:
aliquots of resuspended pellets to which C. m. subsp. sepedonicus has been added (preparation see Appendix 2),
a suspension of 106 cells per ml of C. m. subsp. sepedonicus in water from a virulent isolate (e.g. NCPPB 2140 or NCPPB 4053),
if possible also use DNA extracted from positive control samples in the PCR test.
To avoid potential contamination prepare positive controls in a separate environment from samples to be tested.
Sample extracts should be as free as possible from soil. It could therefore in certain cases advisible to prepare extractions from washed potatoes if PCR protocols are to be used.
Use positive and negative control samples as described above.U.K.
Prepare control material in an identical manner as the sample(s).
A variety of methods are available for purification of target DNA from complex sample substrates, thus removing inhibitors of PCR and other enzymatic reactions and concentrating target DNA in the sample extract.
The following method has been optimised for use with the validated PCR method shown in Appendix 6.
Pipette 220 µl of lysis buffer (100 mM NaCl, 10 mM Tris-HCl [pH 8,0], 1 mM EDTA [pH 8,0]) into a 1,5 ml Eppendorf tube.
Add 100 µl sample extract and place in a heating block or waterbath at 95 °C for 10 minutes.
Put tube on ice for five minutes.
Add 80 µl Lysozyme stock solution (50 mg lysozyme per ml in 10 mM Tris HCl, pH 8,0) and incubate at 37 °C for 30 minutes.
Add 220 µl of Easy DNA® solution A (Invitrogen), mix well by vortexing and incubate at 65 °C for 30 minutes.
Add 100 µl of Easy DNA® solution B (Invitrogen), vortex vigorously until the precipitate runs freely in the tube and the sample is uniformly viscous.
Add 500 µl of chloroform and vortex until the viscosity decreases and the mixture is homogeneous.
Centrifuge at 15 000 g for 20 minutes at 4 °C to separate phases and form the interphase.
Transfer the upper phase into a fresh Eppendorf tube.
Add 1 ml of 100 % ethanol (-20 °C) vortex briefly and incubate on ice for 10 minutes.
Centrifuge at 15 000 g for 20 minutes at 4 °C and remove ethanol from pellet.
Add 500 µl 80 % ethanol (-20 °C) and mix by inverting the tube.
Centrifuge at 15 000 g for 10 minutes at 4 °C, save the pellet and remove ethanol.
Allow the pellet to dry in air or in a DNA speed vac.
Resuspend the pellet in 100 µl sterile UPW and leave at room temperature for at least 20 minutes.
Store at -20 °C until required for PCR.
Spin down any white precipitate by centrifugation and use 5 µl of the supernatant containing DNA for the PCR.
Other DNA extraction methods (e.g. Qiagen DNeasy Plant Kit) could be applied providing that they are proven to be equally as effective in purifying DNA from control samples containing 103 to 104 pathogen cells per ml.
Interpretation of the PCR test result:
The PCR test is negative if the C. m. subsp. sepedonicus-specific PCR amplicon of expected size is not detected for the sample in question but is detected for all positive control samples (in case of multiplex PCR with plant specific internal control primers: a second PCR-product of expected size must be amplified with the sample in question).
The PCR test is positive if the C. m. subsp. sepedonicus-specific PCR amplicon of expected size and restriction pattern (when required) is detected, providing that it is not amplified from any of the negative control samples. Reliable confirmation of a positive result can also be obtained by repeating the test with a second set of PCR primers (section 9.3).
Inhibition of the PCR may be suspected if the expected amplicon is obtained from the positive control sample containing C. m. subsp. sepedonicus in water but negative results are obtained from positive controls with C. m. subsp. sepedonicus in potato extract. In multiplex PCR protocols with internal PCR controls, inhibition of the reaction is indicated when neither of the two amplicons are obtained.
Contamination may be suspected if the expected amplicon is obtained from one or more of the negative controls.
The Whole Directive you have selected contains over 200 provisions and might take some time to download. You may also experience some issues with your browser, such as an alert box that a script is taking a long time to run.
Would you like to continue?
The Schedules you have selected contains over 200 provisions and might take some time to download. You may also experience some issues with your browser, such as an alert box that a script is taking a long time to run.
Would you like to continue?
Latest Available (revised):The latest available updated version of the legislation incorporating changes made by subsequent legislation and applied by our editorial team. Changes we have not yet applied to the text, can be found in the ‘Changes to Legislation’ area.
Original (As adopted by EU): The original version of the legislation as it stood when it was first adopted in the EU. No changes have been applied to the text.
Point in Time: This becomes available after navigating to view revised legislation as it stood at a certain point in time via Advanced Features > Show Timeline of Changes or via a point in time advanced search.
Geographical Extent: Indicates the geographical area that this provision applies to. For further information see ‘Frequently Asked Questions’.
Show Timeline of Changes: See how this legislation has or could change over time. Turning this feature on will show extra navigation options to go to these specific points in time. Return to the latest available version by using the controls above in the What Version box.
Access essential accompanying documents and information for this legislation item from this tab. Dependent on the legislation item being viewed this may include:
This timeline shows the different versions taken from EUR-Lex before exit day and during the implementation period as well as any subsequent versions created after the implementation period as a result of changes made by UK legislation.
The dates for the EU versions are taken from the document dates on EUR-Lex and may not always coincide with when the changes came into force for the document.
For any versions created after the implementation period as a result of changes made by UK legislation the date will coincide with the earliest date on which the change (e.g an insertion, a repeal or a substitution) that was applied came into force. For further information see our guide to revised legislation on Understanding Legislation.
Use this menu to access essential accompanying documents and information for this legislation item. Dependent on the legislation item being viewed this may include:
Click 'View More' or select 'More Resources' tab for additional information including: