ANNEX IX

COST-BENEFIT ANALYSIS

Part 1

General principles of the cost-benefit analysis

The purpose of preparing cost-benefit analyses in relation to measures for promoting efficiency in heating and cooling as referred to in Article 14(3) is to provide a decision base for qualified prioritisation of limited resources at society level.

The cost-benefit analysis may either cover a project assessment or a group of projects for a broader local, regional or national assessment in order to establish the most cost-effective and beneficial heating or cooling option for a given geographical area for the purpose of heat planning.

Cost-benefit analyses for the purposes of Article 14(3) shall include an economic analysis covering socio-economic and environmental factors.

The cost-benefit analyses shall include the following steps and considerations:

(a) Establishing a system boundary and geographical boundary

The scope of the cost-benefit analyses in question determines the relevant energy system. The geographical boundary shall cover a suitable well-defined geographical area, e.g. a given region or metropolitan area, to avoid selecting sub-optimised solutions on a project by project basis.

(b) Integrated approach to demand and supply options

The cost-benefit analysis shall take into account all relevant supply resources available within the system and geographical boundary, using the data available, including waste heat from electricity generation and industrial installations and renewable energy, and the characteristics of, and trends in heat and cooling demand.

(c) Constructing a baseline

The purpose of the baseline is to serve as a reference point, to which the alternative scenarios are evaluated.

(d) Identifying alternative scenarios

All relevant alternatives to the baseline shall be considered. Scenarios that are not feasible due to technical reasons, financial reasons, national regulation or time constraints may be excluded at an early stage of the cost-benefit analysis if justified based on careful, explicit and well-documented considerations.

Only high-efficiency cogeneration, efficient district heating and cooling or efficient individual heating and cooling supply options should be taken into account in the costbenefit analysis as alternative scenarios compared to the baseline.

- (e) Method for the calculation of cost-benefit surplus
 - (i) The total long-term costs and benefits of heat or cooling supply options shall be assessed and compared.

- (ii) The criterion for evaluation shall be the net present value (NPV) criterion.
- (iii) The time horizon shall be chosen such that all relevant costs and benefits of the scenarios are included. For example, for a gas-fired power plant an appropriate time horizon could be 25 years, for a district heating system, 30 years, or for heating equipment such as boilers 20 years.
- (f) Calculation and forecast of prices and other assumptions for the economic analysis
 - (i) Member States shall provide assumptions, for the purpose of the cost-benefit analyses, on the prices of major input and output factors and the discount rate.
 - (ii) The discount rate used in the economic analysis for the calculation of net present value shall be chosen according to European or national guidelines⁽¹⁾.
 - (iii) Member States shall use national, European or international energy price development forecasts if appropriate in their national and/or regional/local context.
 - (iv) The prices used in the economic analysis shall reflect the true socio economic costs and benefits and should include external costs, such as environmental and health effects, to the extent possible, i.e. when a market price exists or when it is already included in European or national regulation.
- (g) Economic analysis: Inventory of effects

The economic analyses shall take into account all relevant economic effects.

Member States may assess and take into account in decision making costs and energy savings from the increased flexibility in energy supply and from a more optimal operation of the electricity networks, including avoided costs and savings from reduced infrastructure investment, in the analysed scenarios.

The costs and benefits taken into account shall include at least the following:

- (i) Benefits
 - Value of output to the consumer (heat and electricity)
 - External benefits such as environmental and health benefits, to the extent possible
- (ii) Costs
 - Capital costs of plants and equipments
 - Capital costs of the associated energy networks
 - Variable and fixed operating costs
 - Energy costs
 - Environmental and health cost, to the extent possible
- (h) Sensitivity analysis:

A sensitivity analysis shall be included to assess the costs and benefits of a project or group of projects based on different energy prices, discount rates and other variable factors having a significant impact on the outcome of the calculations.

The Member States shall designate the competent authorities responsible for carrying out the cost-benefit analyses under Article 14. Member States may require competent local, regional

and national authorities or operators of individual installations to carry out the economic and financial analysis. They shall provide the detailed methodologies and assumptions in accordance with this Annex and establish and make public the procedures for the economic analysis.

Part 2

Principles for the purpose of Article 14(5) and (7)

The cost-benefit analyses shall provide information for the purpose of the measures in Article 14(5) and (7):

If an electricity-only installation or an installation without heat recovery is planned, a comparison shall be made between the planned installations or the planned refurbishment and an equivalent installation producing the same amount of electricity or process heat, but recovering the waste heat and supplying heat through high-efficiency cogeneration and/or district heating and cooling networks.

Within a given geographical boundary the assessment shall take into account the planned installation and any appropriate existing or potential heat demand points that could be supplied from it, taking into account rational possibilities (for example, technical feasibility and distance).

The system boundary shall be set to include the planned installation and the heat loads, such as building(s) and industrial process. Within this system boundary the total cost of providing heat and power shall be determined for both cases and compared.

Heat loads shall include existing heat loads, such as an industrial installation or an existing district heating system, and also, in urban areas, the heat load and costs that would exist if a group of buildings or part of a city were provided with and/or connected into a new district heating network.

The cost-benefit analysis shall be based on a description of the planned installation and the comparison installation(s), covering electrical and thermal capacity, as applicable, fuel type, planned usage and the number of planned operating hours annually, location and electricity and thermal demand.

For the purpose of the comparison, the thermal energy demand and the types of heating and cooling used by the nearby heat demand points shall be taken into account. The comparison shall cover infrastructure related costs for the planned and comparison installation.

Cost-benefit analyses for the purposes of Article 14(5) shall include an economic analysis covering a financial analysis reflecting actual cash flow transactions from investing in and operating individual installations.

Projects with positive cost-benefit outcome are those where the sum of discounted benefits in the economic and financial analysis exceeds the sum of discounted costs (cost-benefit surplus).

Member States shall set guiding principles for the methodology, assumptions and time horizon for the economic analysis.

Member States may require that the companies responsible for the operation of thermal electric generation installations, industrial companies, district heating and cooling networks, or other parties influenced by the defined system boundary and geographical boundary, contribute data for use in assessing the costs and benefits of an individual installation.

(1) The national discount rate chosen for the purpose of economic analysis should take into account data provided by the European Central Bank.