- Latest available (Revised)
- Original (As adopted by EU)
Commission Regulation (EEC) No 2568/91 of 11 July 1991 on the characteristics of olive oil and olive-residue oil and on the relevant methods of analysis
When the UK left the EU, legislation.gov.uk published EU legislation that had been published by the EU up to IP completion day (31 December 2020 11.00 p.m.). On legislation.gov.uk, these items of legislation are kept up-to-date with any amendments made by the UK since then.
Legislation.gov.uk publishes the UK version. EUR-Lex publishes the EU version. The EU Exit Web Archive holds a snapshot of EUR-Lex’s version from IP completion day (31 December 2020 11.00 p.m.).
There are outstanding changes by UK legislation not yet made to Commission Regulation (EEC) No 2568/91. Any changes that have already been made to the legislation appear in the content and are referenced with annotations.
Revised legislation carried on this site may not be fully up to date. Changes and effects are recorded by our editorial team in lists which can be found in the ‘Changes to Legislation’ area. Where those effects have yet to be applied to the text of the legislation by the editorial team they are also listed alongside the legislation in the affected provisions. Use the ‘more’ link to open the changes and effects relevant to the provision you are viewing.
Textual Amendments
Spectrophotometric examination in the ultraviolet can provide information on the quality of a fat, its state of preservation and changes brought about by technological processes. The absorption at the wavelengths specified in the method is due to the presence of conjugated diene and triene systems resulting from oxidation processes and/or refining practices. These absorptions are expressed as specific extinctions (the extinction of 1 % w/v solution of the fat in the specified solvent, in a 10 mm cell) conventionally indicated by K (also referred to as ‘ extinction coefficient ’ ).
This Annex describes the procedure for performing a spectrophotometric examination of olive oil in the ultraviolet region.
A sample is dissolved in the required solvent and the absorbance of the solution is measured at the specified wavelengths with reference to pure solvent.
The specific extinctions at 232 nm and 268 nm in iso-octane or 232 nm and 270 nm in cyclohexane are calculated for a concentration of 1 % w/v in a 10 mm cell.
Another possibility in order to check the response of the photocell and the photomultiplier is to proceed as follows: weigh 0,2000 g of pure potassium chromate for spectrophotometry and dissolve in 0,05 N potassium hydroxide solution in a 1 000 ml graduated flask and make up to the mark. Take precisely 25 ml of the solution obtained, transfer to a 500 ml graduated flask and dilute up to the mark using the same potassium hydroxide solution.
Measure the extinction of the solution so obtained at 275 nm, using the potassium hydroxide solution as a reference. The extinction measured using a 1 cm cuvette should be 0,200 ± 0,005.
During the analysis, unless otherwise stated, use only reagents of recognised analytical grade and distilled or demineralised water or water of equivalent purity.
Solvent: Iso-octane (2,2,4 trimethylpentane) for the measurements at 232 nm and 268 nm and cyclohexane for the measurements at 232 nm and 270 nm, having an absorbance less than 0,12 at 232 nm and less than 0,05 at 270 nm against distilled water, measured in a 10 mm cell.
NOTE: Generally, a mass of 0,25 to 0,30 g is sufficient for absorbance measurements of virgin and extra virgin olive oils at 268 nm and 270 nm. For measurements at 232 nm, 0,05 g of sample are usually required, so two distinct solutions are usually prepared. For absorbance measurements of olive pomace oils, refined olive oils and adulterated olive oils, a smaller portion of sample, e.g. 0,1 g is usually needed due to their higher absorbance. U.K.
The extinction values recorded must lie within the range 0,1 to 0,8 or within the range of linearity of the spectrophotometer which should be verified. If not, the measurements must be repeated using more concentrated or more dilute solutions as appropriate.
NOTE: λmax is considered to be 268 nm for isooctane used as solvent and 270 nm for cyclohexane. U.K.
where:
=
specific extinction at wavelength λ;
=
extinction measured at wavelength λ;
=
concentration of the solution in g/100 ml;
=
path length of the quartz cell in cm;
expressed to two decimal places.
The variation of the absolute value of the extinction (ΔΚ) is given by:
where Km is the specific extinction at the wavelength for maximum absorption at 270 nm and 268 nm depending on the solvent used.
The results should be expressed to two decimal places.]
The Whole Regulation you have selected contains over 200 provisions and might take some time to download. You may also experience some issues with your browser, such as an alert box that a script is taking a long time to run.
Would you like to continue?
The Schedules you have selected contains over 200 provisions and might take some time to download. You may also experience some issues with your browser, such as an alert box that a script is taking a long time to run.
Would you like to continue?
Latest Available (revised):The latest available updated version of the legislation incorporating changes made by subsequent legislation and applied by our editorial team. Changes we have not yet applied to the text, can be found in the ‘Changes to Legislation’ area.
Original (As adopted by EU): The original version of the legislation as it stood when it was first adopted in the EU. No changes have been applied to the text.
Geographical Extent: Indicates the geographical area that this provision applies to. For further information see ‘Frequently Asked Questions’.
Show Timeline of Changes: See how this legislation has or could change over time. Turning this feature on will show extra navigation options to go to these specific points in time. Return to the latest available version by using the controls above in the What Version box.
Access essential accompanying documents and information for this legislation item from this tab. Dependent on the legislation item being viewed this may include:
This timeline shows the different versions taken from EUR-Lex before exit day and during the implementation period as well as any subsequent versions created after the implementation period as a result of changes made by UK legislation.
The dates for the EU versions are taken from the document dates on EUR-Lex and may not always coincide with when the changes came into force for the document.
For any versions created after the implementation period as a result of changes made by UK legislation the date will coincide with the earliest date on which the change (e.g an insertion, a repeal or a substitution) that was applied came into force. For further information see our guide to revised legislation on Understanding Legislation.
Use this menu to access essential accompanying documents and information for this legislation item. Dependent on the legislation item being viewed this may include:
Click 'View More' or select 'More Resources' tab for additional information including: