Council Regulation (EC) No 423/2007 of 19 April 2007 concerning restrictive measures against Iran (repealed)

COUNCIL REGULATION (EC) No 423/2007

of 19 April 2007

concerning restrictive measures against Iran (repealed)

THE COUNCIL OF THE EUROPEAN UNION,

Having regard to the Treaty establishing the European Community, and in particular Articles 60 and 301 thereof,

Having regard to Council Common Position 2007/140/CFSP of 27 February 2007 concerning restrictive measures against Iran⁽¹⁾,

Having regard to the proposal from the Commission,

Whereas:

- (1) On 23 December 2006, the United Nations Security Council adopted Resolution 1737 (2006) (UNSCR 1737 (2006)) deciding that Iran should without further delay suspend all enrichment-related and reprocessing activities, as well as work on all heavy water-related projects, and take certain steps required by the International Atomic Energy Agency (IAEA) Board of Governors, which the United Nations Security Council deems essential to build confidence in the exclusively peaceful purpose of Iran's nuclear programme. In order to persuade Iran to comply with this mandatory decision, the United Nations Security Council decided that all Member States of the United Nations should apply a number of restrictive measures.
- (2) In line with UNSCR 1737 (2006), Common Position 2007/140/CFSP provides for certain restrictive measures against Iran. These measures include restrictions on exports and imports of goods and technology which could contribute to Iran's enrichment-related, reprocessing, or heavy water-related activities, or to the development of nuclear weapon delivery systems, a ban on the provision of related services, a ban on investment related to such goods and technology, a ban on procurement of relevant goods and technology from Iran, as well as the freezing of funds and economic resources of persons, entities and bodies engaged in, directly associated with or providing support for such activities or development.
- (3) These measures fall within the scope of the Treaty establishing the European Community and, therefore, notably with a view to ensuring their uniform application by economic operators in all Member States, Community legislation is necessary in order to implement them as far as the Community is concerned.
- (4) This Regulation derogates from existing Community legislation that provides for general rules on exports to, and imports from, third countries, and in particular from Council Regulation (EC) No 1334/2000 of 22 June 2000 setting up a Community regime

for the control of exports of dual-use items and technology⁽²⁾, in so far as this Regulation covers the same goods and technology.

- (5) For reasons of expediency, the Commission should be empowered to publish the list of banned goods and technology and any amendments to it that will be adopted by the Sanctions Committee or the United Nations Security Council, and to amend the lists of persons, entities and bodies whose funds and economic resources should be frozen on the basis of decisions reached by the United Nations Security Council or by the Sanctions Committee.
- (6) As regards the procedure for establishing and amending the list referred to in Article 7(2) of this Regulation, the Council should exercise the corresponding implementing powers itself in view of the objectives of UNSCR 1737 (2006), notably to constrain Iran's development of sensitive technologies in support of its nuclear and missile programmes, and the proliferation-sensitive nature of the activities undertaken by the persons and entities supporting these programmes.
- (7) Member States should determine the penalties applicable to infringements of the provisions of this Regulation. The penalties provided for should be proportionate, effective and dissuasive.
- (8) In order to ensure that the measures provided for in this Regulation are effective, the latter should enter into force on the day of its publication,

HAS ADOPTED THIS REGULATION:

Article 1

For the purposes of this Regulation only, the following definitions shall apply:

- (a) 'Sanctions Committee' means the Committee of the United Nations Security Council which was established pursuant to paragraph 18 of UNSCR 1737 (2006);
- (b) 'technical assistance' means any technical support related to repairs, development, manufacture, assembly, testing, maintenance, or any other technical service, and may take forms such as instruction, advice, training, transmission of working knowledge or skills or consulting services; including verbal forms of assistance;
- (c) the term 'goods' includes items, materials and equipment;
- (d) the term 'technology' includes software;
- (e) 'investment' means acquisition or extension of a participation in enterprises, including the acquisition in full of such enterprises and the acquisition of shares and securities of a participating nature;
- (f) 'brokering services' means activities of persons, entities and partnerships acting as intermediaries by buying, selling or arranging the transfer of goods and technology, or negotiating or arranging transactions that involve the transfer of goods or technology;
- (g) 'funds' means financial assets and benefits of every kind, including but not limited to:
 - (i) cash, cheques, claims on money, drafts, money orders and other payment instruments;

- (ii) deposits with financial institutions or other entities, balances on accounts, debts and debt obligations;
- (iii) publicly- and privately-traded securities and debt instruments, including stocks and shares, certificates representing securities, bonds, notes, warrants, debentures and derivatives contracts;
- (iv) interest, dividends or other income on or value accruing from or generated by assets;
- (v) credit, right of set-off, guarantees, performance bonds or other financial commitments;
- (vi) letters of credit, bills of lading, bills of sale; and
- (vii) documents showing evidence of an interest in funds or financial resources;
- (h) 'freezing of funds' means preventing any moving, transfer, alteration, use of, access to, or dealing with funds in any way that would result in any change in their volume, amount, location, ownership, possession, character, destination or other change that would enable the funds to be used, including portfolio management;
- (i) 'economic resources' means assets of every kind, whether tangible or intangible, movable or immovable, which are not funds but which may be used to obtain funds, goods or services;
- (j) 'freezing of economic resources' means preventing the use of economic resources to obtain funds, goods or services in any way, including, but not limited to, by selling, hiring or mortgaging them;
- (k) 'territory of the Community' means the territories of the Member States to which the Treaty is applicable, under the conditions laid down in the Treaty, including their airspace.

Article 2

- [^{F1}1.] It shall be prohibited:
 - a to sell, supply, transfer or export, directly or indirectly, the following goods and technology, whether or not originating in the Community, to any natural or legal person, entity or body in, or for use in, Iran:
 - (i) all goods and technology contained in the Nuclear Suppliers Group and Missile Technology Control Regime lists. These goods and technology are listed in Annex I;
 - (ii) other goods and technology determined by the Sanctions Committee or the United Nations Security Council as goods and technology which could contribute to Iran's enrichment-related, reprocessing, or heavy water-related activities, or to the development of nuclear weapon delivery systems. These goods and technology are also listed in Annex I;
 - b to participate, knowingly and intentionally, in activities the object or effect of which is to circumvent the prohibition referred to in point (a).

[^{F1}2 Annex I shall not include goods and technology included in the Common Military List of the European Union⁽³⁾.]

Textual Amendments

F1 Inserted by Council Regulation (EC) No 618/2007 of 5 June 2007 amending Regulation (EC) No 423/2007 concerning restrictive measures against Iran.

Article 3

1 A prior authorisation shall be required for the sale, supply, transfer or export, directly or indirectly, of the goods and technology listed in Annex II, whether or not originating in the Community, to any natural or legal person, entity or body in, or for use in, Iran.

2 Annex II shall include any goods and technology other than those included in Annex I, which could contribute to enrichment-related, reprocessing or heavy water-related activities, to the development of nuclear weapon delivery systems, or to the pursuit of activities related to other topics about which the International Atomic Energy Agency (IAEA) has expressed concerns or identified as outstanding.

3 Exporters shall supply the competent authorities with all relevant information required for their application for an export authorisation.

4 The competent authorities of the Member States, as indicated in the websites listed in Annex III, shall not grant any authorisation for any sale, supply, transfer or export of the goods or technology included in Annex II, if they determine that the sale, supply, transfer or export thereof would contribute to one of the following activities:

- a Iran's enrichment-related, reprocessing or heavy water-related activities;
- b the development of nuclear weapon delivery systems by Iran; or
- c the pursuit by Iran of activities related to other topics about which the IAEA has expressed concerns or identified as outstanding.

5 Under the conditions set out in paragraph 4, the competent authorities of the Member States, as indicated in the websites listed in Annex III, may annul, suspend, modify or revoke an export authorisation which they have already granted.

6 Where they refuse to grant an authorisation, or annul, suspend, substantially limit or revoke an authorisation in accordance with paragraph 4, the Member States shall notify the other Member States and the Commission thereof and share the relevant information with them, while complying with the provisions concerning the confidentiality of such information of Council Regulation (EC) No 515/97 of 13 March 1997 on mutual assistance between the administrative authorities of the Member States and cooperation between the latter and the Commission to ensure the correct application of the law on customs and agricultural matters⁽⁴⁾.

7 Before a Member State grants an export authorisation which has been denied by another Member State or States, in accordance with paragraph 4, for an essentially identical transaction and for which the denial is still valid, it will first consult the Member State or States which issued the denial as provided for in paragraphs 5 and 6. If, following such consultations, the Member State concerned decides to grant an authorisation, it shall inform the other Member States and the Commission thereof, providing all relevant information to explain the decision.

Article 4

It shall be prohibited to purchase, import or transport the goods and technology listed in Annex I, from Iran, whether the item concerned originates in Iran or not.

Article 5

[^{F2}] It shall be prohibited:

- a to provide, directly or indirectly, technical assistance related to the goods and technology listed in the Common Military List of the European Union, or related to the provision, manufacture, maintenance and use of goods included in that list, to any natural or legal person, entity or body in, or for use in, Iran;
- b to provide, directly or indirectly, technical assistance or brokering services related to the goods and technology listed in Annex I, or related to the provision, manufacture, maintenance and use of goods listed in Annex I, to any natural or legal person, entity or body in, or for use in, Iran;
- c to provide investment to enterprises in Iran engaged in the manufacture of goods and technology listed in the Common Military List of the European Union or in Annex I;
- d to provide, directly or indirectly, financing or financial assistance related to the goods and technology listed in the Common Military List of the European Union or in Annex I, including in particular grants, loans and export credit insurance, for any sale, supply, transfer or export of such items, or for any provision of related technical assistance to any natural or legal person, entity or body in, or for use in, Iran;
- e to participate, knowingly and intentionally, in activities, the object or effect of which is to circumvent the prohibitions referred to in points (a) to (d).

The prohibitions set out in this paragraph shall not apply to non-combat vehicles which have been manufactured or fitted with materials to provide ballistic protection, intended solely for protective use of personnel of the EU and its Member States in Iran.]

- 2 The provision of:
 - a technical assistance, or brokering services related to, goods and technology listed in Annex II and to the provision, manufacture, maintenance and use of these items, directly or indirectly to any person, entity or body in, or for use in Iran;
 - b investment to enterprises in Iran engaged in the manufacture of goods and technology as listed in Annex II;
 - c financing or financial assistance related to goods and technologies referred to in Annex II, including in particular grants, loans and export credit insurance, for any sale, supply, transfer or export of these items, or for any provision of related technical assistance, directly or indirectly, to any person, entity or body in, or for use in Iran;

shall be subject to an authorisation of the competent authority of the Member State concerned.

3 The competent authorities of the Member States, as indicated in the websites listed in Annex III, shall not grant any authorisation for the transactions referred to in paragraph 2, if they determine that the action were to contribute to one of the following activities:

- a Iran's enrichment-related, reprocessing or heavy water-related activities;
- b the development of nuclear weapon delivery systems by Iran; or
- c the pursuit by Iran of activities related to other topics about which the IAEA has expressed concerns or identified as outstanding.

Textual Amendments

F2 Substituted by Council Regulation (EC) No 618/2007 of 5 June 2007 amending Regulation (EC) No 423/2007 concerning restrictive measures against Iran.

Article 6

The competent authorities of the Member States, as indicated in the websites listed in Annex III, may grant, under such terms and conditions as they deem appropriate, an authorisation for a transaction in relation to goods and technology, assistance, investment or brokering services referred to in Articles 2 or 5(1), where the Sanctions Committee has determined in advance and on a case-by-case basis that the transaction would clearly contribute neither to the development of technologies in support of Iran's proliferation sensitive nuclear activities, nor to the development of nuclear weapon development delivery systems, including where such goods and technology, assistance, investment or brokering services are for food, agricultural, medical or other humanitarian purposes, provided that:

- (a) the contract for delivery of the goods or technology, or for the provision of assistance, includes appropriate end-user guarantees, and
- (b) Iran has undertaken not to use the goods or technology concerned, or if applicable, the assistance concerned, in proliferation sensitive nuclear activities or for development of nuclear weapon delivery systems.

Article 7

1 All funds and economic resources belonging to, owned, held or controlled by the persons, entities and bodies listed in Annex IV shall be frozen. Annex IV shall include the persons, entities and bodies designated by the United Nations Security Council or by the Sanctions Committee in accordance with paragraph 12 of UNSCR 1737 (2006).

2 All funds and economic resources belonging to, owned, held or controlled by the persons, entities and bodies listed in Annex V shall be frozen. Annex V shall include natural and legal persons, entities and bodies, not covered by Annex IV, who, in accordance with Article 5(1)(b) of Common Position 2007/140/CFSP, have been identified as:

- a being engaged in, directly associated with, or providing support for, Iran's proliferationsensitive nuclear activities, or
- b being engaged in, directly associated with, or providing support for, Iran's development of nuclear weapon delivery systems, or
- c acting on behalf of or at the direction of a person, entity or body referred to under (a) or (b), or
- d being a legal person, entity or body owned or controlled by a person, entity or body referred to under (a) or (b), including through illicit means.

3 No funds or economic resources shall be made available, directly or indirectly, to or for the benefit of the natural or legal persons, entities or bodies listed in Annexes IV and V.

4 The participation, knowingly and intentionally, in activities the object or effect of which is, directly or indirectly, to circumvent the measures referred to in paragraphs 1, 2 and 3 shall be prohibited.

Article 8

By way of derogation from Article 7, the competent authorities of the Member States, as indicated in the websites listed in Annex III, may authorise the release of certain frozen funds or economic resources, if the following conditions are met:

(a) [^{F2}the funds or economic resources are the subject of a judicial, administrative or arbitral lien established before the date on which the person, entity or body referred to in Article 7 has been designated by the Sanctions Committee, the Security Council

or by the Council or of a judicial, administrative or arbitral judgment rendered prior to that date;]

- (b) the funds or economic resources will be used exclusively to satisfy claims secured by such a lien or recognised as valid in such a judgment, within the limits set by applicable laws and regulations governing the rights of persons having such claims;
- (c) the lien or judgment is not for the benefit of a person, entity or body listed in Annex IV or V;
- (d) recognising that the lien or judgment is not contrary to public policy in the Member State concerned; and
- (e) if Article 7(1) applies, the Sanctions Committee has been notified by the Member State of the lien or judgment.

Textual Amendments

F2 Substituted by Council Regulation (EC) No 618/2007 of 5 June 2007 amending Regulation (EC) No 423/2007 concerning restrictive measures against Iran.

Article 9

By way of derogation from Article 7 and provided payment by a person, entity or body listed in Annex IV or V is due under a contract, agreement or obligation that was concluded by, or arose for the person, entity or body concerned, before the date on which that person, entity or body has been designated by the Sanctions Committee, the Security Council or by the Council, the competent authorities of the Member States, as indicated in the websites listed in Annex III, may authorise, under such conditions as they deem appropriate, the release of certain frozen funds or economic resources, if the following conditions are met:

- (a) the competent authority concerned has determined that:
 - (i) the funds or economic resources shall be used for a payment by a person, entity or body listed in Annex IV or V;
 - (ii) the contract, agreement or obligation will not contribute to the manufacture, sale, purchase, transfer, export, import, transport or use of goods and technology listed in Annexes I and II; and
 - (iii) the payment is not in breach of Article 7(3);
- (b) if Article 7(1) applies, the Member State concerned has notified the Sanctions Committee of that determination and its intention to grant an authorisation, and the Sanctions Committee has not objected to that course of action within ten working days of notification; and
- (c) if Article 7(2) applies, the Member State concerned has notified that determination of its competent authority and its intention to grant an authorisation to the other Member States and to the Commission at least two weeks prior to the authorisation.

Article 10

1 By way of derogation from Article 7, the competent authorities of the Member States, as indicated in the websites listed in Annex III, may authorise, under such conditions as they

deem appropriate, the release of certain frozen funds or economic resources, or the making available of certain funds or economic resources, if the following conditions are met:

- a the competent authority concerned has determined that the funds or economic resources are:
 - necessary to satisfy the basic needs of persons listed in Annex IV or V, and their dependent family members, including payments for foodstuffs, rent or mortgage, medicines and medical treatment, taxes, insurance premiums, and public utility charges;
 - (ii) intended exclusively for payment of reasonable professional fees and reimbursement of incurred expenses associated with the provision of legal services; or
 - (iii) intended exclusively for payment of fees or service charges for routine holding or maintenance of frozen funds or economic resources; and
- b if the authorisation concerns a person, entity or body listed in Annex IV, the Member State concerned has notified the Sanctions Committee of that determination and its intention to grant an authorisation, and the Sanctions Committee has not objected to that course of action within five working days of notification.

2 By way of derogation from Article 7, the competent authorities of the Member States, as indicated in the websites listed in Annex III, may authorise the release of certain frozen funds or economic resources or the making available of certain funds or economic resources, after having determined that the funds or economic resources are necessary for extraordinary expenses, provided that

- a if the authorisation concerns a person, entity or body listed in Annex IV, the Sanctions Committee has been notified of this determination by the Member State concerned and that the determination has been approved by that Committee, and
- b if the authorisation concerns a person, entity or body listed in Annex V, the competent authority has notified the grounds on which it considers that a specific authorisation should be granted to the other competent authorities of the Member States and to the Commission at least two weeks before the authorisation.

3 The relevant Member State shall inform the other Member States and the Commission of any authorisation granted under paragraphs 1 and 2.

Article 11

1 Article 7(3) shall not prevent financial or credit institutions in the Community from crediting frozen accounts where they receive funds transferred by third parties to the account of a listed natural or legal person, entity or body, provided that any additions to such accounts will also be frozen. The financial or credit institution shall inform the competent authorities about such transactions without delay.

- 2 Article 7(3) shall not apply to the addition to frozen accounts of:
 - a interest or other earnings on those accounts; or
 - [^{F2}b payments due under contracts, agreements or obligations that were concluded or arose before the date on which the person, entity or body referred to in Article 7 has been designated by the Sanctions Committee, the Security Council or by the Council;]

provided that any such interest, other earnings and payments are frozen in accordance with Article 7(1) or 7(2).

Textual Amendments

F2 Substituted by Council Regulation (EC) No 618/2007 of 5 June 2007 amending Regulation (EC) No 423/2007 concerning restrictive measures against Iran.

Article 12

1 The freezing of funds and economic resources or the refusal to make funds or economic resources available, carried out in good faith on the basis that such action is in accordance with this Regulation, shall not give rise to liability of any kind on the part of the natural or legal person or entity or body implementing it, or its directors or employees, unless it is proved that the funds and economic resources were frozen or withheld as a result of negligence.

2 The prohibitions set out in Articles 5(1)(c) and 7(3) shall not give rise to liability of any kind on the part of the natural or legal persons or entities concerned, if they did not know, and had no reasonable cause to suspect, that their actions would infringe these prohibitions.

Article 13

1 Without prejudice to the applicable rules concerning reporting, confidentiality and professional secrecy, natural and legal persons, entities and bodies shall:

- a supply immediately any information which would facilitate compliance with this Regulation, such as accounts and amounts frozen in accordance with Article 7, to the competent authorities of the Member States, as indicated in the websites listed in Annex III, where they are resident or located, and shall transmit such information, directly or through the Member States, to the Commission;
- b cooperate with the competent authorities, as indicated in the websites listed in Annex III, in any verification of this information.

2 Any additional information directly received by the Commission shall be made available to the Member State concerned.

3 Any information provided or received in accordance with this Article shall be used only for the purposes for which it was provided or received.

Article 14

The Commission and Member States shall immediately inform each other of the measures taken under this Regulation and shall supply each other with any other relevant information at their disposal in connection with this Regulation, in particular information in respect of violations and enforcement problems and judgments handed down by national courts.

Article 15

1 The Commission shall:

- a amend Annex I on the basis of determinations made by either the United Nations Security Council or the Sanctions Committee;
- b amend Annex III on the basis of information supplied by Member States;
- c amend Annex IV on the basis of determinations made by either the United Nations Security Council or the Sanctions Committee.

2 The Council, acting by qualified majority, shall establish, review and amend the list of persons, entities and bodies referred to in Article 7(2) and in full accordance with the

determinations made by the Council in respect of Annex II to Common Position 2007/140/ CFSP. The list in Annex V shall be reviewed in regular intervals and at least every 12 months.

3 The Council shall state individual and specific reasons for decisions taken pursuant to paragraph 2 and make them known to the persons, entities and bodies concerned.

Article 16

1 Member States shall lay down the rules on penalties applicable to infringements of this Regulation and shall take all measures necessary to ensure that they are implemented. The penalties provided for shall be effective, proportionate and dissuasive.

2 Member States shall notify the Commission of those rules without delay after the entry into force of this Regulation and shall notify it of any subsequent amendment.

Article 17

1 Member States shall designate the competent authorities referred to in this Regulation and identify them in or through the websites as listed in Annex III.

2 Member States shall notify the Commission of their competent authorities without delay after the entry into force of this Regulation and shall notify it of any subsequent amendment.

Article 18

This Regulation shall apply:

- (a) within the territory of the Community;
- (b) on board any aircraft or any vessel under the jurisdiction of a Member State;
- (c) to any person inside or outside the territory of the Community who is a national of a Member State;
- (d) to any legal person, entity or body which is incorporated or constituted under the law of a Member State;
- (e) to any legal person, entity or body in respect of any business done in whole or in part within the Community.

Article 19

This Regulation shall enter into force on the day of its publication in the *Official Journal* of the European Union.

This Regulation shall be binding in its entirety and directly applicable in all Member States.

[^{F3}ANNEX I

Goods and technology referred to in Articles 2, 4 and 5(1)

Textual Amendments

F3 Substituted by Commission Regulation (EC) No 116/2008 of 28 January 2008 amending Council Regulation (EC) No 423/2007 concerning restrictive measures against Iran.

INTRODUCTORY NOTES

Where possible, the items in this Annex are defined by reference to the list of dual-use items set out in Annex I to Council Regulation (EC) No 1334/2000, as amended by Council Regulation (EC) No 1183/2007⁽⁵⁾.

The descriptions of the items in this Annex are often, but not always, identical or similar to descriptions of the items set out in the list of dual-use items. Each description is based as much as possible on that of the first dual-use item referred to. Where there are differences between the two descriptions, the description of the goods or technology found in this Annex shall be decisive. For the sake of clarity, an asterisk indicates that a description is based on the description of the dual-use item referred to, but contains different values for the technical parameters used or omits or adds specific elements.

If only part of the scope of the dual-use item referred to is covered by an entry in this Annex, the reference number taken from the list of dual-use items is preceded by '*ex*'.

For the definitions of terms between 'double quotation marks' please refer to Regulation (EC) No 1183/2007.

This Annex does not include goods and technology (including software) included in the Common Military List of the European Union⁽⁶⁾. In accordance with Article 1(1)(c) of Common Position 2007/140/CFSP⁽⁷⁾, the Member States of the European Union will prohibit the direct or indirect supply, sale or transfer of such goods and technology to Iran. General Notes

- 1. For control or prohibition of goods which are designed or modified for military use, see the relevant list(s) of controls or prohibitions on military goods maintained by individual Member States. References in this Annex that state 'See also Military Goods Controls' refer to the same lists.
- 2. The object of the prohibitions contained in this Annex should not be defeated by the export of any non-prohibited goods (including plant) containing one or more prohibited components when the prohibited component or components are the principal element of the goods and can feasibly be removed or used for other purposes.

N.B.: In judging whether the prohibited component or components are to be considered the principal element, it is necessary to weigh the factors of quantity, value and technological knowhow involved and other special circumstances which might establish the prohibited component or components as the principal element of the goods being procured.

3. Goods specified in this Annex include both new and used goods. Nuclear Technology Note (NTN)

(To be read in conjunction with Section I.0.B.)

Status: Point in time view as at 24/06/2008.
Changes to legislation: There are currently no known outstanding effects for the
Council Regulation (EC) No 423/2007 (repealed). (See end of Document for details)

The sale, supply, transfer or export of 'technology' directly associated with any goods whose sale, supply, transfer or export is prohibited in Section I.0.A is prohibited according to the provisions of Category I.0.

'Technology' for the 'development', 'production' or 'use' of goods under prohibition remains under prohibition even when applicable to non-prohibited goods.

The approval of goods for export granted in accordance with Article 6 of Regulation (EC) No 423/2007, also authorizes the export to the same end-user of the minimum 'technology' required for the installation, operation, maintenance and repair of the goods.

Prohibitions on 'technology' transfer do not apply to information 'in the public domain' or to 'basic scientific research'.

General Technology Note (GTN)

(To be read in conjunction with Sections I.1B, I.2B, I.3B, I.4B, I.5B, I.6B, I.7B and I.9B.)

The sale, supply, transfer or export of 'technology' which is 'required' for the 'development', 'production' or 'use' of goods whose sale, supply, transfer or export is prohibited in Categories I.1 to I.9, is prohibited according to the provisions of Categories I.1 to I.9.

'Technology' required' for the 'development', 'production' or 'use' of goods under prohibition remains under prohibition even when applicable to non-prohibited goods.

Prohibitions do not apply to that 'technology' which is the minimum necessary for the installation, operation, maintenance (checking) and repair of those goods which are not prohibited or whose export has been authorised in accordance with Regulation (EC) No 423/2007.

Prohibitions on 'technology' transfer do not apply to information 'in the public domain', to 'basic scientific research' or to the minimum necessary information for patent applications. General Software Note (GSN)

(This note overrides any prohibition within sections I.0B, I.1B, I.2B, I.3B, I.4B, I.5B, I.6B, I.7B and I.9B.)

Categories I.0 to I.9 of this list do not prohibit 'software' which is either:

- a. Generally available to the public by being:
 - 1. Sold from stock at retail selling points, without restriction, by means of:
 - a. Over-the-counter transactions;
 - b. Mail order transactions;
 - c. Electronic transactions; or
 - d. Telephone order transactions; and
 - 2. Designed for installation by the user without further substantial support by the supplier; or
- b. 'In the public domain'.

I.0 NUCLEAR MATERIAL, FACILITIES AND EQUIPMENT

I.0A

GOODS

No	Relevant item(s) from Annex to Regulation (EC) No 1183/2007	Description
I.0A.001	0A001	'Nuclear reactors' and specially designed or prepared equipment and components therefor, as
		follows: a. 'Nuclear reactors' capable of operation so as to maintain a controlled self- sustaining fission chain reaction;
		b. Metal vessels, or major shop- fabricated parts therefor, specially designed or prepared to contain the core of a 'nuclear reactor', including the reactor vessel head for a reactor pressure vessel;
		c. Manipulative equipment specially designed or prepared for inserting or removing fuel in a 'nuclear reactor';
		 d. Control rods specially designed or prepared for the control of the fission process in a 'nuclear reactor', support or suspension structures therefor, rod drive mechanisms and rod guide tubes; e. Pressure tubes
		specially designed or prepared to

> contain fuel elements and the primary coolant in a 'nuclear reactor' at an operating pressure in excess of 5,1 MPa; f. Zirconium metal and alloys in the form of tubes or assemblies of tubes in which the ratio of hafnium to zirconium is less than 1:500 parts by weight, specially designed or prepared for use in a 'nuclear reactor'; Coolant pumps g. specially designed or prepared for circulating the primary coolant of 'nuclear reactors'; 'Nuclear reactor h. internals' specially designed or prepared for use in a 'nuclear reactor', including support columns for the core, fuel channels, thermal shields, baffles, core grid plates, and diffuser plates; Note: In I.0A.001.h. *'nuclear reactor* internals' means any major structure within a reactor vessel which has one or more functions such as supporting the core, maintaining fuel alignment, directing primary coolant flow, providing radiation shields for the reactor vessel,

Status: Point in time view as at 24/06/2008.
Changes to legislation: There are currently no known outstanding effects for the
Council Regulation (EC) No 423/2007 (repealed). (See end of Document for details)

		 and guiding in-core instrumentation. i. Heat exchangers (steam generators) specially designed or prepared for use in the primary coolant circuit of a 'nuclear reactor'; j. Neutron detection and measuring instruments specially designed or prepared for determining neutron flux levels within the core of a 'nuclear reactor'.
I.0A.002	<i>ex</i> 0B001* (0B001.a, 0B001.b.1-13, 0B001.c, 0B001.d 0B001.e 0B001.f 0B001.g 0B001.h 0B001.i and 0B001.j)	Plant for the separation of isotopes of 'natural uranium', 'depleted uranium' and 'special fissile materials', and specially designed or prepared equipment and components therefor, as follows:Plant specially designed for separating isotopes of 'natural uranium', 'depleted uranium', and 'special fissile materials', as follows:1.Gas centrifuge separation plant;2.Gaseous diffusion separation plant;3.Aerodynamic separation plant;4.Chemical exchange separation plant;5.Ion- exchange

	separation
	plant;
6.	Atomic
	vapour
	'laser'
	isotope
	separation
	(AVLIS)
_	plant;
7.	Molecular
	'laser'
	isotope
	separation (MLIS)
	plant;
8.	Plasma
0.	separation
	plant;
9.	Electro
<i>.</i>	magnetic
	separation
	plant;
Gas cent	
and asser	mblies
and com	ponents,
specially	designed
or prepar	ed for
gas centr	
separatio	n process,
as follow	
	I.0A.002.b.
'high str	
to-densit material	
any of th	means
following	e 7
a.	g. Maraging
а.	steel
	capable
	of an
	ultimate
	tensile
	strength
	of 2 050
	MPa or
_	more;
b.	Aluminium
	alloys
	capable
	of an
	ultimate
	tensile
	strength of

	460 MPa
	or more;
C	or 'Fibrous
С.	r ibrous or
	filamentary
	materials'
	with a
	'specific
	modulus'
	of more
	than 3,18
	$\times 10^{6}$
	m and a
	'specific
	tensile
	strength'
	greater
	than 76,2
	$\times 10^{3} m;$
1.	Gas
	centrifuges;
2.	Complete
	rotor
2	assemblies;
3.	Rotor tube
	cylinders
	with a wall
	thickness
	of 12 mm
	or less, a
	diameter
	of
	between
	75 mm
	and 400
	mm, made
	from 'high
	strength-
	to-density
	ratio
	materials';
4.	Rings or
	bellows
	with
	a wall thickness
	of 3 mm
	or less and
	a diameter
	of
	01

	between
	75 mm
	and 400
	mm and
	designed
	to give
	local
	support to a rotor
	tube or
	to join a
	number
	together,
	made
	from 'high
	strength-
	to-density
	ratio
-	materials';
5.	Baffles of
	between
	75 mm
	and 400
	mm
	diameter
	for
	mounting
	inside a
	rotor tube,
	made
	from 'high
	strength-
	to-density
	ratio
	materials';
6.	Top or
	bottom
	caps of
	between
	75 mm
	and 400
	mm
	diameter
	to fit the
	ends of a
	rotor tube,
	made
	from 'high
	strength-
	to-density
	ratio
	materials';
	materials,

7.	Magnetic
	suspension
	bearings
	consisting
	of an
	annular
	magnet
	suspended
	within a
	housing
	made of or
	protected
	by
	'materials
	resistant to
	corrosion
	by UF_6 '
	containing
	a damping
	medium
	and
	having the
	magnet
	coupling with a
	pole piece
	or second
	magnet
	fitted to
	the top
	cap of the
	rotor;
8.	Specially
	prepared
	bearings
	comprising
	a pivot-
	cup
	assembly
	mounted
	on a
0	damper; Molecular
9.	
	pumps comprised
	of
	cylinders
	having
	internally
	machined
	or
	extruded
	helical

		grooves
		and
		internally
		machined
		bores;
	10.	Ring-
		shaped
		motor
		stators for
		multiphase
		AC
		hysteresis
		(or reluctance)
		motors for
		synchronous
		operation
		within a
		vacuum
		in the
		frequency
		range of
		600 to
		2 000
		Hz and
		a power
		range of
		50 to 1
		000 Volt-
		Amps;
	11.	Centrifuge
		housing/
		recipients
		to contain
		the rotor
		tube
		assembly
		of a gas
		centrifuge, consisting
		of a rigid cylinder
		of wall
		thickness
		up to 30
		mm with
		precision
		machined
		ends and
		made of or
		protected
		by
		'materials
I		

resistant to corrosion by UF_6 '; 12. Scoops consisting of tubes of up to 12 mm internal diameter for the extraction of UF₆ gas from within a centrifuge rotor tube by a Pitot tube action, made of or protected by 'materials resistant to corrosion by UF_6 '; 13. Frequency changers (converters or inverters) specially designed or prepared to supply motor stators for gas centrifuge enrichment, having all of the following characteristics, and specially designed components therefor: Multiphase a. output

	of
	600
	to
	2
	000
	Hz;
b.	Frequency
	control
	better
	than
	0,1
	%;
c.	Harmonic
	distortion
	of
	less
	than 2
	2 %;
	⁷⁰ , and
d.	An
u.	efficiency
	greater
	than
	80
	%;
Equipment and	,
components,	
specially designed	
or prepared for	
gaseous diffusion	
separation process	,
as follows:	
1. Gaseous	
diffusion	l
barriers made of	
porous metallic,	
polymer	
or ceram	ic
'material	
resistant	to
corrosion	1
by UF ₆ '	
with a	
pore size	;
of 10 to	
100 nm,	
thickness	5
of 5 mm	
or less,	
and, for	

	tubular
	forms, a
	diameter
	of 25 mm
	or less;
2.	Gaseous
2.	diffuser
	housings
	made of or
	protected
	by
	'materials
	resistant to
	corrosion
2	by UF_6 ';
3.	Compressors
	(positive
	displacement,
	centrifugal
	and axial
	flow
	types)
	or gas
	blowers
	with a
	suction
	volume
	capacity
	of $1 \text{ m}^3/$
	min or
	more of
	UF_6 , and
	discharge
	pressure
	-
	up to 666,7 kPa,
	made of or
	protected
	*
	by 'materials
	resistant to
	corrosion
	by UF_6 ';
4.	Rotary
	shaft
	seals for
	compressors
	or blowers
	specified
	in
	I.0A.002.c.3.
	and

5.	designed for a buffer gas in-leakage rate of less than 1 000 cm ³ /min.; Heat exchangers made of aluminium, copper, nickel, or alloys containing more than 60 per cent nickel, or combinations of these metals as clad tubes, designed to operate at sub- atmospheric pressure with a leak rate that limits the pressure rise to less than 10 Pa per hour under a pressure differential of 100 kPa;
6.	of 100

to 1 500 mm; Equipment and components, specially designed or prepared for aerodynamic separation process, as follows: Separation 1. nozzles consisting of slitshaped, curved channels having a radius of curvature less than 1 mm, resistant to corrosion by UF₆, and having a knife-edge contained within the nozzle which separates the gas flowing through the nozzle into two streams; 2. Tangential inlet flowdriven cylindrical or conical tubes, (vortex tubes), made of or protected by 'materials resistant to corrosion by UF₆'

with a diameter of between 0,5 cm and 4 cm and a length to diameter ratio of 20:1 or less and with one or more tangential inlets; 3. Compressors (positive displacement, centrifugal and axial flow types) or gas blowers with a suction volume capacity of $2 \text{ m}^3/$ min or more, made of or protected by 'materials resistant to corrosion by UF_6 ', and rotary shaft seals therefor; 4. Heat exchangers made of or protected by 'materials resistant to corrosion by UF_6 ';

separation element housings, made of or protected by 'materials resistant to corrosion by UF ₆ ' to contain vortex tubes or separation nozzles; 6. Bellows valves made of or protected by 'materials resistant to corrosion by UF ₆ ', with a diameter of 40 to 1 500 mm; 7. Process systems for separating UF ₆ from carrier gas (hydrogen or helium) to 1 ppm UF ₆ content or less, including: a. Cryogenic heat exchangers and cryoseparators capable of temperatures of 153		5.	Aerodynamic
element housings, made of or protected by 'materials resistant to corrosion by UF ₆ ' to contain vortex tubes or separation nozzles; 6. Bellows valves made of or protected by 'materials resistant to corrosion by UF ₆ ', with a diameter of 40 to 1 500 mm; 7. Process systems for separating UF ₆ from carrier gas (hydrogen or helium) to 1 ppm UF ₆ content or less, including: a. Cryogenic heat exchangers and cryoseparators capable of temperatures of			
made of or protected by 'materials resistant to corrosion by UF ₆ ' to contain vortex tubes or separation nozzles; 6. Bellows valves made of or protected by 'materials resistant to corrosion by UF ₆ ', with a diameter of 40 to 1 500 mm; 7. Process systems for separating UF ₆ from carrier gas (hydrogen or helium) to 1 ppm UF ₆ content or less, including: a. Cryogenic heat exchangers and cryoseparators capable of			
protected by 'materials resistant to corrosion by UF ₆ ' to contain vortex tubes or separation nozzles; 6. Bellows valves made of or protected by 'materials resistant to corrosion by UF ₆ ', with a diameter of 40 to 1 500 mm; 7. Process systems for separating UF ₆ from carrier gas (hydrogen or helium) to 1 ppm UF ₆ content or less, including: a. Cryogenic heat exchangers and cryoseparators capable of temperatures of			housings,
$\begin{array}{c} \by\\ `materials\\ resistant to\\ corrosion\\ by UF_6`\\ to contain\\ vortex\\ tubes or\\ separation\\ nozzles;\\ 6. Bellows\\ valves\\ made of or\\ protected\\ by\\ `materials\\ resistant to\\ corrosion\\ by UF_6`,\\ with a\\ diameter\\ of 40 to 1\\ 500 mm;\\ 7. Process\\ systems\\ for\\ separating\\ UF_6 from\\ carrier gas\\ (hydrogen\\ or helium)\\ to 1 ppm\\ UF_6\\ content\\ or less,\\ including:\\ a. Cryogenic\\ heat\\ exchangers\\ and\\ cryoseparators\\ capable\\ of\\ temperatures\\ of\\ \end{array}$			
'materials resistant to corrosion by UF ₆ ' to contain vortex tubes or separation nozzles; 6. Bellows valves made of or protected by 'materials resistant to corrosion by UF ₆ ', with a diameter of 40 to 1 500 mm; 7. Process systems for separating UF ₆ from carrier gas (hydrogen or helium) to 1 ppm UF ₆ content or less, including: a. Cryogenic heat exchangers and cryoseparators capable of temperatures of			protected
resistant to corrosion by UF ₆ ' to contain vortex tubes or separation nozzles; 6. Bellows valves made of or protected by 'materials resistant to corrosion by UF ₆ ', with a diameter of 40 to 1 500 mm; 7. Process systems for separating UF ₆ from carrier gas (hydrogen or helium) to 1 ppm UF ₆ content or less, including: a. Cryogenic heat exchangers and cryoseparators capable of temperatures of			by
$\begin{array}{c} \mbox{corrosion}\\ \mbox{by} UF_6'\\ \mbox{to contain}\\ \mbox{vortex}\\ \mbox{tubes or}\\ \mbox{separation}\\ \mbox{nozzles;}\\ \mbox{6.} & \mbox{Bellows}\\ \mbox{valves}\\ \mbox{made of or}\\ \mbox{protected}\\ \mbox{by}\\ \mbox{valves}\\ \mbox{made of or}\\ \mbox{protected}\\ \mbox{by}\\ \mbox{'materials}\\ \mbox{resistant to}\\ \mbox{corrosion}\\ \mbox{by} UF_6',\\ \mbox{with a}\\ \mbox{diameter}\\ \mbox{of 40 to 1}\\ \mbox{500 mm;}\\ \mbox{7.} & \mbox{Process}\\ \mbox{systems}\\ \mbox{for}\\ \mbox{separating}\\ \mbox{UF}_6 \mbox{for}\\ \mbox{separating}\\ \mbox{UF}_6 \mbox{form}\\ \mbox{content}\\ \mbox{or helium})\\ \mbox{to 1 ppm}\\ \mbox{UF}_6\\ \mbox{content}\\ \mbox{or less,}\\ \mbox{including:}\\ \mbox{a.} & \mbox{Cryogenic}\\ \mbox{heat}\\ \mbox{exchangers}\\ \mbox{and}\\ \mbox{cryoseparators}\\ \mbox{capable}\\ \mbox{of}\\ \mbox{former}\\ $			'materials
$\begin{array}{c cccc} by UF_6'\\ to contain\\ vortex\\ tubes or\\ separation\\ nozzles;\\ 6. & Bellows\\ valves\\ made of or\\ protected\\ by\\ `materials\\ resistant to\\ corrosion\\ by UF_6',\\ with a\\ diameter\\ of 40 to 1\\ 500 mm;\\ 7. & Process\\ systems\\ for\\ separating\\ UF_6 from\\ carrier gas\\ (hydrogen\\ or helium)\\ to 1 ppm\\ UF_6\\ content\\ or less,\\ including:\\ a. & Cryogenic\\ heat\\ exchangers\\ and\\ cryoseparators\\ capable\\ of\\ temperatures\\ of\\ \end{array}$			
to contain vortex tubes or separation nozzles; 6. Bellows valves made of or protected by 'materials resistant to corrosion by UF ₆ ', with a diameter of 40 to 1 500 mm; 7. Process systems for separating UF ₆ from carrier gas (hydrogen or helium) to 1 ppm UF ₆ content or less, including: a. Cryogenic heat exchangers and cryoseparators capable of temperatures of			
$\begin{tabular}{ c c c c } \hline vortex \\ tubes or \\ separation \\ nozzles; \\ \hline 6. & Bellows \\ valves \\ made of or \\ protected \\ by \\ `materials \\ resistant to \\ corrosion \\ by UF_6', \\ with a \\ diameter \\ of 40 to 1 \\ 500 mm; \\ \hline 7. & Process \\ systems \\ for \\ separating \\ UF_6 from \\ carrier gas \\ (hydrogen \\ or helium) \\ to 1 ppm \\ UF_6 \\ content \\ or less, \\ including: \\ a. & Cryogenic \\ heat \\ exchangers \\ and \\ cryoseparators \\ capable \\ of \\ temperatures \\ of \\ \end{tabular}$			•
tubes or separation nozzles; 6. Bellows valves made of or protected by 'materials resistant to corrosion by UF ₆ ', with a diameter of 40 to 1 500 mm; 7. Process systems for separating UF ₆ from carrier gas (hydrogen or helium) to 1 ppm UF ₆ content or less, including: a. Cryogenic heat exchangers and cryoseparators capable of temperatures of			
$\begin{array}{cccc} & separation \\ & nozzles; \\ 6. & Bellows \\ & valves \\ & made of or \\ & protected \\ & by \\ & `materials \\ & resistant to \\ & corrosion \\ & by UF_6`, \\ & with a \\ & diameter \\ & of 40 to 1 \\ & 500 mm; \\ 7. & Process \\ & systems \\ & for \\ & separating \\ & UF_6 from \\ & carrier gas \\ & (hydrogen \\ & or helium) \\ & to 1 ppm \\ & UF_6 \\ & content \\ & or less, \\ & including: \\ a. & Cryogenic \\ & heat \\ & exchangers \\ & and \\ & cryoseparators \\ & capable \\ & of \\ & temperatures \\ & of \\ \end{array}$			
6. Bellows valves made of or protected by 'materials resistant to corrosion by UF ₆ ', with a diameter of 40 to 1 500 mm; 7. Process systems for separating UF ₆ from carrier gas (hydrogen or helium) to 1 ppm UF ₆ content or less, including: a. Cryogenic heat exchangers and cryoseparators capable of temperatures of			
6. Bellows valves made of or protected by 'materials resistant to corrosion by UF ₆ ', with a diameter of 40 to 1 500 mm; 7. Process systems for separating UF ₆ from carrier gas (hydrogen or helium) to 1 ppm UF ₆ content or less, including: a. Cryogenic heat exchangers and cryoseparators capable of temperatures of			
valves made of or protected by 'materials resistant to corrosion by UF ₆ ', with a diameter of 40 to 1 500 mm; 7. Process systems for separating UF ₆ from carrier gas (hydrogen or helium) to 1 ppm UF ₆ content or less, including: a. Cryogenic heat exchangers and cryoseparators capable of temperatures of		ſ	
$\begin{array}{c c} made of or \\ protected \\ by \\ `materials \\ resistant to \\ corrosion \\ by UF_6`, \\ with a \\ diameter \\ of 40 to 1 \\ 500 mm; \\ \hline r. Process \\ systems \\ for \\ separating \\ UF_6 from \\ carrier gas \\ (hydrogen \\ or helium) \\ to 1 ppm \\ UF_6 \\ content \\ or less, \\ including: \\ a. \\ Cryogenic \\ heat \\ exchangers \\ and \\ cryoseparators \\ capable \\ of \\ temperatures \\ of \\ \end{array}$		6.	
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$			
by 'materials resistant to corrosion by UF ₆ ', with a diameter of 40 to 1 500 mm; 7. Process systems for separating UF ₆ from carrier gas (hydrogen or helium) to 1 ppm UF ₆ content or less, including: a. Cryogenic heat exchangers and cryoseparators capable of temperatures of			
'materials resistant to corrosion by UF ₆ ', with a diameter of 40 to 1 500 mm; 7. Process systems for separating UF ₆ from carrier gas (hydrogen or helium) to 1 ppm UF ₆ content or less, including: a. Cryogenic heat exchangers and cryoseparators capable of temperatures of			÷
resistant to corrosion by UF ₆ ', with a diameter of 40 to 1 500 mm; 7. Process systems for separating UF ₆ from carrier gas (hydrogen or helium) to 1 ppm UF ₆ content or less, including: a. Cryogenic heat exchangers and cryoseparators capable of temperatures of			
$\begin{array}{c} \mbox{corrosion} \\ \mbox{by UF}_6{}^{\prime}, \\ \mbox{with a} \\ \mbox{diameter} \\ \mbox{of 40 to 1} \\ \mbox{500 mm}; \\ \mbox{7.} & \mbox{Process} \\ \mbox{systems} \\ \mbox{for} \\ \mbox{separating} \\ \mbox{UF}_6 \\ \mbox{from carrier gas} \\ \mbox{(hydrogen} \\ \mbox{or helium)} \\ \mbox{to 1 ppm} \\ \mbox{UF}_6 \\ \mbox{content} \\ \mbox{or less,} \\ \mbox{including:} \\ \mbox{a.} \\ \mbox{Cryogenic} \\ \mbox{heat} \\ \mbox{exchangers} \\ \mbox{and} \\ \mbox{cryoseparators} \\ \mbox{capable} \\ \mbox{of} \\ \mbox{temperatures} \\ \mbox{of} \\ \end{array}$			
by UF ₆ ', with a diameter of 40 to 1 500 mm; 7. Process systems for separating UF ₆ from carrier gas (hydrogen or helium) to 1 ppm UF ₆ content or less, including: a. Cryogenic heat exchangers and cryoseparators capable of temperatures of			
with a diameter of 40 to 1 500 mm; 7. Process systems for separating UF_6 from carrier gas (hydrogen or helium) to 1 ppm UF_6 content or less, including: a. Cryogenic heat exchangers and cryoseparators capable of temperatures of			
diameter of 40 to 1 500 mm; 7. Process systems for separating UF ₆ from carrier gas (hydrogen or helium) to 1 ppm UF ₆ content or less, including: a. Cryogenic heat exchangers and cryoseparators capable of temperatures of			
of 40 to 1 500 mm; 7. Process systems for separating UF_6 from carrier gas (hydrogen or helium) to 1 ppm UF_6 content or less, including: a. Cryogenic heat exchangers and cryoseparators capable of temperatures of			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
$\begin{array}{c c} systems \\ for \\ separating \\ UF_6 from \\ carrier gas \\ (hydrogen \\ or helium) \\ to 1 ppm \\ UF_6 \\ content \\ or less, \\ including: \\ a. \\ Cryogenic \\ heat \\ exchangers \\ and \\ cryoseparators \\ capable \\ of \\ temperatures \\ of \\ \end{array}$			500 mm;
		7.	Process
$\begin{array}{c} \text{separating}\\ \text{UF}_6 \text{ from}\\ \text{carrier gas}\\ (\text{hydrogen}\\ \text{or helium})\\ \text{to 1 ppm}\\ \text{UF}_6\\ \text{content}\\ \text{or less,}\\ \text{including:}\\ \text{a.} \qquad \text{Cryogenic}\\ \text{heat}\\ \text{exchangers}\\ \text{and}\\ \text{cryoseparators}\\ \text{capable}\\ \text{of}\\ \text{temperatures}\\ \text{of} \end{array}$			systems
$\begin{array}{c c} UF_6 \mbox{ from} \\ \mbox{carrier gas} \\ \mbox{(hydrogen} \\ \mbox{or helium)} \\ \mbox{to 1 ppm} \\ UF_6 \\ \mbox{content} \\ \mbox{or less,} \\ \mbox{including:} \\ \mbox{a.} \\ \mbox{Cryogenic} \\ \mbox{heat} \\ \mbox{exchangers} \\ \mbox{and} \\ \mbox{cryoseparators} \\ \mbox{capable} \\ \mbox{of} \\ \mbox{temperatures} \\ \mbox{of} \\ \end{array}$			
$\begin{array}{c} \text{carrier gas} \\ (hydrogen \\ or helium) \\ \text{to 1 ppm} \\ UF_6 \\ \text{content} \\ or less, \\ \text{including:} \\ a. \\ Cryogenic \\ heat \\ exchangers \\ and \\ cryoseparators \\ capable \\ of \\ temperatures \\ of \\ \end{array}$			
(hydrogen or helium) to 1 ppm UF ₆ content or less, including: a. Cryogenic heat exchangers and cryoseparators capable of temperatures of			
or helium) to 1 ppm UF_6 content or less, including: a. Cryogenic heat exchangers and cryoseparators capable of temperatures of			
$\begin{array}{c c} to 1 \ ppm \\ UF_6 \\ content \\ or less, \\ including: \\ a. & Cryogenic \\ heat \\ exchangers \\ and \\ cryoseparators \\ capable \\ of \\ temperatures \\ of \\ \end{array}$			
$\begin{array}{c} UF_6\\ content\\ or less,\\ including:\\ a. Cryogenic\\ heat\\ exchangers\\ and\\ cryoseparators\\ capable\\ of\\ temperatures\\ of\\ \end{array}$			
content or less, including: a. Cryogenic heat exchangers and cryoseparators capable of temperatures of			
or less, including: a. Cryogenic heat exchangers and cryoseparators capable of temperatures of			
including: a. Cryogenic heat exchangers and cryoseparators capable of temperatures of			
a. Cryogenic heat exchangers and cryoseparators capable of temperatures of			
heat exchangers and cryoseparators capable of temperatures of			
exchangers and cryoseparators capable of temperatures of			
and cryoseparators capable of temperatures of			
capable of temperatures of			
of temperatures of			
temperatures of			
of			
153			
			153

b.	K (- 120 °C) or less; Cryogenic refrigeration units capable of temperatures of 153
c.	K (- 120 °C) or less; Separation nozzle or vortex tube units for the
d.	separation of UF_6 from carrier gas; UF_6 cold traps capable of temperatures of 253 K (- 20 °C)
Equipment and components, specially designed or prepared for chemical exchange	or less;

		on process,
	as follow	VS:
	1.	Fast-
		exchange
		liquid-
		liquid
		pulse
		columns
		with stage
		residence
		time of 30
		seconds or
		less and
		resistant to
		concentrated
		hydrochloric
		acid (e.g.
		made of or
		protected
		by suitable
		plastic
		materials
		such as
		fluorocarbon
		polymers
		or glass);
	2.	Fast-
		exchange
		liquid-
		liquid
		centrifugal
		contactors
		with stage
		residence
		time of 30
		seconds or
		less and
		resistant to
		concentrated
		hydrochloric
		acid (e.g.
		made of or
		protected
		by suitable
		plastic
		materials
		such as
		fluorocarbon
		polymers
		or glass);
	3.	Electrochemical
		reduction
		cells
I		

	resistant to
	concentrated
	hydrochloric
	acid
	solutions,
	for
	reduction
	of
	uranium
	from one
	valence
	state to
4	another;
4.	Electrochemical
	reduction
	cells feed
	equipment
	to take
	U^{+4}
	from the
	organic
	stream
	and, for
	those parts
	in contact
	with the
	process
	stream,
	made of or
	protected
	by suitable
	materials
	(e.g. glass,
	fluorocarbon
	polymers,
	polyphenyl
	sulphate,
	polyether
	sulfone
	and resin-
	impregnated
	graphite);
5.	Feed
5.	
	preparation
	systems for
	producing
	high
	purity
	uranium
	chloride
	solution
	consisting

of dissolution, solvent extraction and/or ion exchange equipment for purification and electrolytic cells for reducing the uranium U⁺⁶ or U⁺⁴ to U^{+3} ; Uranium oxidation systems for oxidation of U^{+3} to U^{+4} : Equipment and components, specially designed or prepared for ionexchange separation process, as follows: Fast reacting ionexchange resins, pellicular or porous macroreticulated resins in which the active chemical exchange groups are limited to a coating on the surface of an inactive porous support

6.

1.

structure, and other composite structures in any suitable form, including particles or fibres, with diameters of 0,2 mm or less, resistant to concentrated hydrochloric acid and designed to have an exchange rate half time of less than 10 seconds and capable of operating at temperatures in the range of 373 K (100 °C) to 473 K (200 °C); ionexchange columns (cylindrical) with a diameter greater than 1 000 mm, made of or protected by materials resistant to concentrated hydrochloric

2.

acid (e.g. titanium or fluorocarbon plastics) and capable of operating at temperatures in the range of 373 K (100 °C) to 473 K (200 °C) and pressures above 0,7 MPa; 3. ionexchange reflux systems (chemical or electrochemical oxidation or reduction systems) for regeneration of the chemical reducing or oxidizing agents used in ionexchange enrichment cascades; Equipment and components, specially designed or prepared for atomic vapour 'laser' isotope separation process (AVLIS), as follows:

1.	High power strip or scanning electron beam guns with a delivered power of more than 2,5 kW/ cm for use in uranium vaporization
2.	systems; Liquid uranium metal handling systems for molten uranium or uranium alloys, consisting of crucibles, made of or protected by suitable corrosion and heat resistant materials (e.g. tantalum, yttria- coated graphite, graphite coated with other rare earth oxides or mixtures thereof), and cooling equipment for the crucibles;

N.B.: See also
I.2A.002.
3. Product
and tails
collector
systems
made of or
lined with
materials
resistant
to the
heat and
corrosion
of
uranium
metal
vapour
or liquid,
such as
yttria-
coated
graphite or
tantalum;
4. Separator
module
housings
(cylindrical
or
rectangular
vessels)
for
containing
the
uranium
metal
vapour
source, the
electron
beam gun
and the
product
and tails
collectors;
5. 'Lasers'
or 'laser'
systems
for the
separation
of
uranium
isotopes
with a
spectrum
speedall

> frequency stabiliser for operation over extended periods of time; N.B.: See also I.6A.001 and I.6A.008. Equipment and components, specially designed or prepared for molecular 'laser' isotope separation process (MLIS) or chemical reaction by isotope selective laser activation (CRISLA), as follows: 1. Supersonic expansion nozzles for cooling mixtures of UF₆ and carrier gas to 150 К (– 123 $^{\circ}C)$ or less and made from 'materials resistant to corrosion by UF_6 '; 2. Uranium pentafluoride (UF_5) product collectors consisting of filter, impact, or cyclone type collectors or combinations

		thereof,	
		and	
		made of	
		'materia	
		resistant	
		corrosio	
		by UF ₅ /	
		UF_6 ';	
	3.	Compres	sors
	5.	made of	
		protected	
		by	4
		'materia	ls
		resistant	
		corrosio	
		by UF_6 ',	
		and rota	
		shaft sea	
		therefor;	
	4.	Equipme	
	••	for	
		fluorinat	ing
		UF ₅	ing
		(solid) to	`
		UF_6 (gas	
	5.	Process	,
	5.	systems	
		for	
		separatir	νσ
		UF_6 from	
		carrier	11
		gas (e.g.	
		nitrogen	
		or argon	
		including	
		a.	Cryogenic
		 .	heat
			exchangers
			and
			cryoseparators
			capable
			of
			temperatures
			of
			153
			K
			(-
			(- 120
			°C)
			or
			less;
I			,

	b. c.	Cryogenic refrigeration units capable of temperatures of 153 K (- 120 °C) or less; UF ₆ cold traps capable of temperatures of 253 K (-
		20 °C) or
6.	'Lasers' or 'laser' systems for the separatio of uranium isotopes	
	with a spectrum frequenc stabiliser for operation over extended periods o time;	y 1
N.B.: Sec I.6A.001 I.6A.008 Equipme compone specially or prepar	e also and ent and ents, designed	

		eparation
		as follows:
	1.	Microwave
		power
		sources
		and
		antennae
		for
		producing
		or
		accelerating
		ions, with
		an output
		frequency
		greater
		than 30
		GHz and
		mean
		power
		output
		greater
		than 50
		kW;
	2.	radio-
		frequency
		ion
		excitation
		coils for
		frequencies
		of more
		than 100
		kHz and
		capable of
		handling
		more than
		40 kW
		mean
		power;
	3.	Ūranium
		plasma
		generation
		systems;
	4.	Liquid
		metal
		handling
		systems
		for molten
		uranium
		or
		uranium
		alloys,
		consisting
		of
I		

crucibles, made of or protected by suitable corrosion and heat resistant materials (e.g. tantalum, yttriacoated graphite, graphite coated with other rare earth oxides or mixtures thereof), and cooling equipment for the crucibles; N.B.: See also I.2A.002. 5. Product and tails collectors made of or protected by materials resistant to the heat and corrosion of uranium vapour such as yttriacoated graphite or tantalum; 6. Separator module housings (cylindrical) for containing the

uranium plasma source, radiofrequency drive coil and the product and tails collectors and made of a suitable nonmagnetic material (e.g. stainless steel); Equipment and components, specially designed or prepared for electromagnetic separation process, as follows: Ion sources, single or multiple, consisting of a vapour source, ioniser, and beam accelerator made of suitable nonmagnetic materials (e.g. graphite, stainless steel, or copper) and capable of providing a total ion beam current of

1.

I	50
	50 mA or greater;
2.	Ion
	collector
	plates for
	collection
	of
	enriched
	Or depleted
	depleted uranium
	ion beams,
	consisting
	of two
	or more
	slits and
	pockets
	and made
	of suitable
	non-
	magnetic
	materials
	(e.g. graphite or
	stainless
	steel);
3.	Vacuum
	housings
	for
	uranium
	electromagnetic
	separators
	made of non-
	magnetic
	materials
	(e.g.
	stainless
	steel) and
	designed
	to
	operate at
	pressures
	of 0,1 Pa or lower;
4.	Magnet
. т.	pole
	pieces
	with a
	diameter
	greater
	than 2 m;

	5.	High	
		voltage	
		power	
		supplies	
		for ion	
		sources,	
		having	
		all of the	
		following	
		character	
		a.	Capable
			of
			continuous
		1.	operation;
		b.	Output
			voltage of
			20
			20 000
			V
			or
			greater;
		c.	Output
			current
			of
			1
			А
			or
			greater;
			and
		d.	Voltage
			regulation
			of
			better
			than
			0,01 %
			over a
			period
			of
			8
			hours;
	N.B.: See	e also	
	I.3A.006		
	6.	Magnet	
		power	
		supplies	
		(high	
		power,	
		direct	
		current)	
		having	

		b. N.B.: See also I.3A.005.	g
I.0A.003	0B002	Specially designed or prepared auxiliary systems, equipment and components, as follows, for isotope separation plant specified in I.0A.002, made of or protected by 'materials resistant to corrosion by UF ₆ ': a. Feed autoclaves, ovens or systems	,

I		used for	nassing
		used for UF_6 to th	
	h		ent process;
	b.	Desublin	
		or cold tr	* ·
		used to re	
		UF_6 from	
			ent process
		for subse	
		transfer u	ipon
		heating;	h nu
	c.	Product a	
		tails stati	
		transferri	
	1	into cont	· · · · · · · · · · · · · · · · · · ·
	d.	Liquefac	
		solidifica	
		stations u	
		remove U	
		the enric	
		process b	•
		compress	
		cooling a	
			In UF_6 to a
			solid form;
	e.		stems and
		header sy	
			designed
		for handl	-
		within ga	
			, centrifuge
		or aerody	
	c	cascades	·
	f.	1.	Vacuum
			manifolds
			or vacuum
			headers
			having a suction
			capacity
			of 5 $m^3/$
			minute or
		2	more; or
		2.	Vacuum
			pumps
			specially
			designed
			for use
			in UF ₆
			bearing
			atmospheres;

		g.	sources s designed prepared on-line s feed, pro tails from streams a	heters/ion specially or for taking amples of duct or n UF ₆ gas and having following
I.0A.004	0B003	of uraniu specially	Systems conversion uranium concentr UO ₃ ; Systems conversion to UF ₆ ; Systems	uipment or as follows: for the on of ore ates to for the on of UO ₃

Status: Point in time view as at 24/06/2008.	
Changes to legislation: There are currently no known outstanding effects for the	
Council Regulation (EC) No 423/2007 (repealed). (See end of Document for details)	

		d. Systems for the conversion of UO ₂
		to UF_4 ; e. Systems for the conversion of UF_4 to UF_6 ;
		f. Systems for the conversion of UF ₄
		g. $\begin{array}{c} \text{to uranium metal;}\\ \text{g. Systems for the}\\ \text{conversion of } \text{UF}_6 \end{array}$
		h. Systems for the conversion of UF_6 to UF_4 ;
		i. Systems for the conversion of UO_2 to UCl_4 .
I.0A.005	0B004	Plant for the production or concentration of heavy water, deuterium compounds and specially designed or prepared equipment and components therefor, as follows: a.a.Plant for the production of heavy water, deuterium or deuterium compounds, as follows:1.Water- hydrogen sulphide exchange
		exchange towers fabricated from fine carbon

steel (e.g. ASTM A516) with diameters of 6 m to 9 m, capable of operating at pressures greater than or equal to 2 MPa and with a corrosion allowance of 6 mm or greater; Single stage, low head (i.e. 0,2 MPa) centrifugal blowers or compressors for hydrogen sulphide gas circulation (i.e. gas containing more than 70 % H₂S) with a throughput capacity greater than or equal to 56 m^{3} second when operating at pressures greater than or equal to 1,8 MPa suction

2.

3.	and having seals designed for wet H ₂ S service; Ammonia- hydrogen exchange towers greater than or equal to 35 m in height with diameters
4.	diameters of 1,5 m to 2,5 m capable of operating at pressures greater than 15 MPa; Tower internals, including stage contactors, and stage pumps, including those which are submersible, for heavy water
5.	production utilizing the ammonia- hydrogen exchange process; Ammonia crackers with operating pressures greater

6.	than or equal to 3 MPa for heavy water production utilizing the ammonia- hydrogen exchange process; Infrared absorption analysers capable of on-line hydrogen/ deuterium ratio analysis where deuterium
7.	concentrations are equal to or greater than 90 %; Catalytic burners for the conversion of enriched deuterium gas into bayay
8.	heavy water utilizing the ammonia- hydrogen exchange process; Complete heavy water upgrade systems, or columns therefor, for the

	Status: Point in time view a unges to legislation: There are currently no cil Regulation (EC) No 423/2007 (repealed	o known outstanding effects for the
I.0A.006	0B005	upgrade of heavy water to reactor- grade deuterium concentration Plant specially designed for
		 the fabrication of 'nuclear reactor' fuel elements and specially designed or prepared equipment therefor. Note: A plant for the fabrication of 'nuclear reactor' fuel elements includes equipment which: a. Normally comes into direct contact with or directly processes or controls the production flow of nuclear materials; b. Seals the nuclear materials; b. Seals the nuclear materials within the cladding; c. Checks the integrity of the cladding or the seal; or d. Checks the finish treatment of the sealed fuel.
I.0A.007	0B006	Plant for the reprocessing of irradiated 'nuclear reactor' fuel elements, and specially designed or prepared equipment and components therefor: Note: I.0A.007 includes: a.a.Plant for the reprocessing of irradiated 'nuclear reactor' fuel elements including equipment and components which normally come into direct contact with and directly control the irradiated fuel and the major nuclear material

	and fission product
	processing streams;
b.	Fuel element
0.	chopping or
	shredding
	machines, i.e.
	remotely operated
	equipment to cut,
	chop, shred or shear irradiated
	'nuclear reactor'
	fuel assemblies,
	bundles or rods;
c.	Dissolvers,
	critically safe
	tanks (e.g. small
	diameter, annular
	or slab tanks)
	specially designed
	or prepared for
	the dissolution of
	irradiated 'nuclear
	reactor' fuel, which
	are capable of
	withstanding hot,
	highly corrosive
	liquids, and
	which can be
	remotely loaded and
	maintained;
d.	Counter-current
u.	
	solvent extractors
	and ion-exchange
	processing
	equipment specially
	designed or
	prepared for use
	in a plant for
	the reprocessing
	of irradiated
	'natural uranium',
	'depleted uranium'
	or 'special fissile
	materials';
e.	Holding or storage
	vessels specially
	designed to be
	critically safe and
	resistant to the
	corrosive effects of
	nitric acid;
	Note: Holding or
	storage vessels may
	sionage vessels may

1.0A.008	0В007	features: 1. 2. f. Process instrume specially or prepa monitori controlli reprocess irradiate	Walls or internal structures with a boron equivalent (calculated for all constituent elements as defined in the note to 1.0A.012) of at least two per cent; A maximum diameter of 175 mm for cylindrical vessels; or A maximum width of 75 mm for either a slab or annular vessel. control ntation designed red for ng of mg the sing of cd 'natural ', 'depleted
1.0A.008		plant for the conve plutonium and equ specially designed prepared therefor, a. Systems conversi	ipment or as follows: for the

		plutonium nitrate to oxide;b. Systems for plutonium metal production.
I.0A.009	0C001	 'Natural uranium' or 'depleted uranium' or thorium in the form of metal, alloy, chemical compound or concentrate and any other material containing one or more of the foregoing. Note: 1.0A.009 does not prohibit the following: a. Four grammes or less of 'natural uranium' or 'depleted uranium' when contained in a sensing component in instruments; b. 'Depleted uranium' specially fabricated for the following civil non-nuclear applications: 1. Shielding; 2. Packaging; 3. Ballasts having a mass not greater than 100 kg; 4. Counter-weights having a mass not greater than 100 kg;
		c. Alloys containing less than 5 % thorium; d. Ceramic products
		containing thorium, which have been manufactured for non-nuclear use.
I.0A.010	0C002	'Special fissile materials'. Note: I.0A.010 does not prohibit four 'effective

	tes to legislation: There are currently n Regulation (EC) No 423/2007 (repeale	
		grammes' or less when contained in a sensing component in instruments.
I.0A.011	0C003	Deuterium, heavy water (deuterium oxide) and other compounds of deuterium, and mixtures and solutions containing deuterium, in which the isotopic ratio of deuterium to hydrogen exceeds 1:5 000.
I.0A.012	0C004	Graphite, nuclear grade, having a purity level of less than 5 parts per million 'boron equivalent' and with a density greater than 1,5 g/ cm ³ . N.B.: See also I.1A.028. Note 1: I.0A.012 does not prohibit the following: a. Manufactures of graphite having a mass less than 1 kg, other than those specially designed or prepared for use in a nuclear reactor; b. Graphite powder. Note 2: In I.0A.012, 'boron equivalent' (BE) is defined a. the sum of BE _z for impurities (excluding BE _{carbon} since carbon is not considered an impurity) including boron, where: BE _z (ppm) = CF × concentration of element Z in ppm; where CF is the conversion factor = and σ_B and σ_Z are the thermal neutron capture cross sections (in barns) for naturally occurring boron and element Z respectively; and A _B and A _Z are the atomic masses of naturally

		occurring boron and element Z respectively.
I.0A.013	0C005	Specially prepared compounds or powders for the manufacture of gaseous diffusion barriers, resistant to corrosion by UF_6 (e.g. nickel or alloy containing 60 weight per cent or more nickel, aluminium oxide and fully fluorinated hydrocarbon polymers), having a purity of 99,9 weight per cent or more and a mean particle size of less than 10 micrometres measured by American Society for Testing and Materials (ASTM) B330 standard and a high degree of particle size uniformity.

I.0B

TECHNOLOGY, INCLUDING SOFTWARE

No	Relevant item(s) from Annex to Regulation (EC) No 1183/2007	Description		
I.0B.001	0D001 'Software' designed of 'developm' or 'use' of Section I.0			
I.0B.002	0E001	'Technology' according to the Nuclear Technology Note for the 'development', 'production' or 'use' of goods specified in Section I.0A.		

I.1 MATERIALS, CHEMICALS, 'MICROORGANISMS' AND 'TOXINS'

I.1A

GOODS

No	Relevant item(s) from	Description
	Annex to Regulation (EC)	-
	No 1183/2007	

I.1A.001	1A102	Resaturated pyrolized carbon-carbon components designed for space launch vehicles specified in I.9A.001 or sounding rockets specified in I.9A.005. N.B.: See also Military Goods Controls for components for rockets and missiles.
I.1A.002	1A202	Composite structures in the form of tubes and having both of the following characteristics: N.B.: See also I.9A.011. a. An inside diameter of between 75 mm and 400 mm; and b. Made with any of the 'fibrous or filamentary materials' specified in I.1A.024 or I.1A.034.a. or with carbon prepreg materials specified in I.1A.034.c.
I.1A.003	1A225	Platinized catalysts specially designed or prepared for promoting the hydrogen isotope exchange reaction between hydrogen and water for the recovery of tritium from heavy water or for the production of heavy water.
I.1A.004	1A226	Specialized packings which may be used in separating heavy water from ordinary water, having both of the following characteristics: a. Made of phosphor bronze mesh chemically treated to improve wettability; and b. Designed to be used in vacuum distillation towers.
I.1A.005	1A227	High-density (lead glass or other) radiation shielding

	Status: Point in time view as at 24/06/2 to legislation: There are currently no known out egulation (EC) No 423/2007 (repealed). (See end	standing effects for the
	guiation (EC) No 423/2007 (repeatea). (See ena	oj Document for detaits)
1.1A.006	ex 1B001* (1B001.a, ex 1B001.b and 1B001.c)	 windows, having all of the following characteristics, and specially designed frames therefor: a. A 'cold area' greater than 0,09 m²; b. A density greater than 3 g/cm³; and c. A thickness of 100 mm or greater. Technical Notes: In I.1A.005 the term 'cold area' means the viewing area of the window exposed to the lowest level of radiation in the design application. Equipment for the production of fibres, prepregs, preforms or 'composites' specified in I.1A.024, as follows, and specially designed components and accessories therefor: N.B.: See also I.1A.007 and I.1A.014. Filament winding machines of which the motions for positioning, wrapping and winding fibres are coordinated and programmed in three or more axes, specially designed for the manufacture of 'composite' structures or laminates from 'fibrous or filamentary materials'; Tape-laying machines of which the motions for positioning and laying tape or sheets are coordinated and programmed in two or more axes, specially designed for the manufacture of 'composite' structures or laminates from 'fibrous or filamentary materials'; Tape-laying machines of which the motions for positioning and laying tape or sheets are coordinated and programmed in three or more axes, specially designed for the manufacture of 'composite' structures or laminates from 'fibrous or filamentary materials'; Tape-laying machines of which the motions for positioning and laying tape or sheets are coordinated and programmed in two or more axes, specially designed in two or more

		for the manufacture of 'composite' airframe or 'missile' structures; Note: In I.1A.006.b., 'missile' means complete rocket systems and unmanned aerial vehicle systems. Multidirectional, multidimensional weaving machines or interlacing machines, including adapters and modification kits, for weaving, interlacing or braiding fibres to manufacture 'composite' structures; Technical Notes: For the purposes of I.1A.006.c. the technique of interlacing includes knitting. Note: I.1A.006.c. does not prohibit textile machinery not modified for the above end-uses.
I.1A.007	1B101 and <i>ex</i> 1B001.d	Equipment, other than that specified in I.1A.006, for the 'production' of structural composites as follows; and specially designed components and accessories therefor: <i>Note: Components and</i> <i>accessories specified in</i> <i>I.1A.007 include moulds,</i> <i>mandrels, dies, fixtures</i> <i>and tooling for the preform</i> <i>pressing, curing, casting,</i> <i>sintering or bonding of</i> <i>composite structures,</i>

> *laminates and manufactures* thereof. Filament winding a. machines of which the motions for positioning, wrapping and winding fibres can be coordinated and programmed in three or more axes, designed to fabricate composite structures or laminates from fibrous or filamentary materials, and coordinating and programming controls; Tape-laying b. machines of which the motions for positioning and laying tape and sheets can be coordinated and programmed in two or more axes, designed for the manufacture of composite airframe and 'missile' structures; Equipment designed c. or modified for the 'production' of 'fibrous or filamentary materials' as follows: Equipment 1. for converting polymeric fibres (such as polyacrylonitrile, rayon or polycarbosilane) including special

			2.	provision to strain the fibre during heating; Equipment for the vapour deposition of elements or compounds on heated
			3.	filament substrates; Equipment for the wet-
114.009	10102	d.	or modifi special f treatmen producin and pref specified 1.9A.026 Note: 1.1 includes tension s coating of and clicit	spinning of refractory ceramics (such as aluminium oxide); ent designed fied for fibre surface at or for ng prepregs forms d in entry <i>A.007.d.</i> <i>rollers,</i> <i>stretchers,</i> <i>equipment,</i> <i>equipment</i> <i>ker dies.</i>
I.1A.008	1B102	equipme as follow	vs: e also I.1. Metal po 'product equipme	A.009.b. owder ion ent' usable production', rrolled nent, ical

		 materials specified in I.1A.025.a., I.1A.029.a.1., I.1A.029.a.2. or in the Military Goods Controls. b. Specially designed components for 'production equipment' specified in I.1A.008.a. Note: I.1A.008 includes: a. Plasma generators (high frequency arc-jet) usable for obtaining sputtered or spherical metallic powders with organization of the process in an argon-water environment; b. Electroburst equipment usable for obtaining sputtered or spherical metallic powders with organization of the process in an argon-water environment; c. Equipment usable for the 'production' of spherical aluminium powders by powdering a melt in an inert medium
I.1A.009	1B115	(e.g. nitrogen). Equipment, other than that specified in I.1A.008, for the production of propellant and propellant constituents, as follows, and specially designed components therefor: a. 'Production equipment' for the 'production', handling or

I.1A.010

1B116

acceptance testing of liquid propellants or propellant constituents specified in I.1A.025.a., I.1A.025.b., I.1A.029 or in the Military Goods Controls; 'Production b. equipment' for the 'production', handling, mixing, curing, casting, pressing, machining, extruding or acceptance testing of solid propellants or propellant constituents specified in I.1A.025.a., I.1A.025.b., I.1A.029 or in the Military Goods Controls. Note: I.1A.009.b. does not prohibit batch mixers, continuous mixers or fluid energy mills. For the prohibition of batch mixers, continuous mixers and fluid energy mills see I.1A.011, I.1A.012 and I.1A.013. Note 1: For equipment specially designed for the production of military goods, see the Military Goods Controls. Note 2: I.1A.009 does not prohibit equipment for the *'production', handling and* acceptance testing of boron carbide Specially designed nozzles for producing pyrolitically

Status: Point in time view as at 24/06/2008.
Changes to legislation: There are currently no known outstanding effects for the
Council Regulation (EC) No 423/2007 (repealed). (See end of Document for details)

		derived materials formed on a mould, mandrel or other substrate from precursor gases which decompose in the 1 573 K (1 300 °C) to 3 173 K (2 900 °C) temperature range at pressures of 130 Pa to 20 kPa.
I.1A.011	1B117	Batch mixers with provision for mixing under vacuum in the range of zero to 13,326 kPa and with temperature control capability of the mixing chamber and having all of the following, and specially designed components therefor: a. A total volumetric capacity of 110 litres or more; and b. At least one mixing/ kneading shaft mounted off centre.
I.1A.012	1B118	Continuous mixers with provision for mixing under vacuum in the range of zero to 13,326 kPa and with a temperature control capability of the mixing chamber having any of the following, and specially designed components therefor: a. Two or more mixing/kneading shafts; or b. A single rotating shaft which oscillates and having kneading teeth/pins on the shaft as well as inside the casing of the mixing chamber.
I.1A.013	1B119	Fluid energy mills usable for grinding or milling substances specified in I.1A.025.a., I.1A.025.b., I.1A.029 or in the Military Goods Controls, and

specially designed components therefore.
components therefore.Filament winding machines, other than those specified in I.1A.006 or I.1A.007, and related equipment, as follows: a.a.Filament winding machines having all of the following characteristics: 1.a.Filament winding machines having all of the following characteristics: 1.1.Having motions for positioning, wrapping, and winding fibres coordinated and programme in two or more axes;2.Specially designed to fabricate composite structures or laminates from 'fibrous or filamentary materials';
and 3. Capable of winding cylindrical rotors of diameter between 75 and 400 mm and lengths of 600 mm or greater; b. Coordinating and

		filament winding machines specified in I.1A.014.a.; c. Precision mandrels for the filament winding machines specified in I.1A.014.a.
I.1A.015	1B225	Electrolytic cells for fluorine production with an output capacity greater than 250 g of fluorine per hour.
I.1A.016	1B226	 Electromagnetic isotope separators designed for, or equipped with, single or multiple ion sources capable of providing a total ion beam current of 50 mA or greater. <i>Note: I.1A.016 includes</i> <i>separators:</i> a. Capable of enriching stable isotopes; b. With the ion sources and collectors both in the magnetic field and those configurations in which they are external to the field.
I.1A.017	1B227	Ammonia synthesis converters or ammonia synthesis units, in which the synthesis gas (nitrogen and hydrogen) is withdrawn from an ammonia/hydrogen high- pressure exchange column and the synthesized ammonia is returned to said column
I.1A.018	1B228	 Hydrogen-cryogenic distillation columns having all of the following characteristics: a. Designed for operation with internal temperatures of 35 K (- 238 °C) or less; b. Designed for operation at an

		c. d.	internal pressure of 0,5 to 5 MPa; Constructed of either: 1. Stainless steel of the 300 series with low sulphur content and with an austenitic ASTM (or equivalent standard) grain size number of 5 or greater; or 2. Equivalent materials which are both cryogenic and H ₂ - compatible; and With internal diameters of 1 m or greater.
I.1A.019	1B229	exchang 'internal follows: <i>N.B.: Fo</i> <i>are spec</i> <i>prepared</i>	ydrogen sulphide e tray columns and contactors', as <i>or columns which</i> <i>ially designed or</i> <i>d for the production</i> <i>water see I.0A.005.</i> Water-hydrogen sulphide exchange tray columns, having all of the following characteristics: 1. Can operate at pressures

1.1A.020	1B230	for the w hydrogen exchange columns in I.1A.0 Technica 'Internal contactor the colum segmente which ha effective diameter m or grea are desig to facilita countercu contactin are const stainless a carbon of 0,03 % These ma	a sulphide e tray specified 19.a. 1 Notes: rs' of nns are ed trays ve an assembled of 1,8 ater, rned ate urrent bg and tructed of steels with content 6 or less. ty be sieve live trays, ap trays, or d trays
1.17.020	10230	solutions of concer or dilute potassium catalyst in liquid a (KNH ₂ /NH ₃), havi the following chara	ntrated n amide mmonia ng all of

Status: Point in time view as at 24/06/2008.	
Changes to legislation: There are currently no known outstanding effects for the	
Council Regulation (EC) No 423/2007 (repealed). (See end of Document for details)	

		a. b. c.	-	ally ty greater m ³ /h; and the g
			2.	or For dilute potassium amide solutions (less than 1 %), an operating pressure of 20 to 60 MPa.
I.1A.021	1B231		for the pr recovery concentra handling Equipme tritium fa	refor, as or plants roduction, , extraction, ation, or of tritium;

		removal capacity greater than 150 W; 2. Hydrogen isotope storage or purification systems using metal hydrides as the storage or purification metal
I.1A.022	1B232	Turboexpanders or turboexpander-compressor sets having both of the following characteristics: a. Designed for operation with an outlet temperature of 35 K (- 238 °C) or less; and b. Designed for a throughput of hydrogen gas of 1 000 kg/h or greater.
I.1A.023	1B233	Lithium isotope separation facilities or plants, and equipment therefor, as follows: a. Facilities or plants for the separation of lithium isotopes; b. Equipment for the separation of lithium isotopes, as follows: 1. Packed liquid- liquid exchange columns specially designed for lithium amalgams; 2. Mercury or lithium

<i>Status:</i> Point in time view as at 24/06/2008.	
Changes to legislation: There are currently no known outstanding effects for the	
Council Regulation (EC) No 423/2007 (repealed). (See end of Document for details)	

		3.	amalgam pumps; Lithium amalgam electrolysis cells; Evaporators for concentrated lithium hydroxide solution.
I.1A.024	1C010.b	all of the 1. 2. Note: I. does not fabric m from 'fil or filam materia. repair of aircraft or lamin which th individu does not cm × 10	may be natrix', or carbon te' nates, as A.034 and 'fibrous entary s', having e following: A 'specific modulus' exceeding $12,7 \times 10^{6}$ m; and A 'specific tensile strength' exceeding $23,5 \times 10^{4}$ m; 1A.024.b. t prohibit hade brous entary ls' for the f 'civil ' structures nates, in he size of al sheets t exceed 100

		Properties for materials described in I.1A.024.b. should be determined using SACMA recommended methods SRM 12 to 17, or national equivalent tow tests, such as Japanese Industrial Standard JIS- R-7601, Paragraph 6.6.2., and based on lot average.
I.1A.025	1C011.a and 1C011.b	Metals and compounds, as follows: N.B.: See also Military Goods Controls and I.1A.029. a. Metals in particle sizes of less than 60 μm whether spherical, atomised, spheroidal, flaked or ground, manufactured from material consisting of 99 % or more of zirconium, magnesium and alloys of these; Technical Notes: <i>The natural content</i> of hafnium in the zirconium (typically 2 % to 7 %) is counted with the zirconium. Note: The metals or alloys listed in I.1A.025.a. are prohibited whether or not the metals or alloys are encapsulated in aluminium, magnesium, zirconium or beryllium.

	Status: Point in time view of	as at 24/06/2008.
Changes to legislation: There are currently no known outstanding effects for the Council Regulation (EC) No 423/2007 (repealed). (See end of Document for details)		
		b. Boron or boron carbide of 85 % purity or higher and a particle size of 60 µm or less; Note: The metals or alloys listed in I.1A.025.b. are prohibited whether or not the metals or alloys are encapsulated in aluminium, magnesium, zirconium or beryllium.
I.1A.026	1C101	Materials and devices for reduced observables such as radar reflectivity, ultraviolet/

		the metals or alloys are encapsulated in aluminium, magnesium, zirconium or beryllium.
I.1A.026	1C101	Materials and devices for reduced observables such as radar reflectivity, ultraviolet/ infrared signatures and acoustic signatures, usable in 'missiles', 'missile' subsystems or unmanned aerial vehicles specified in I.9A.003. Note 1: I.1A.026 includes:
I.1A.027	1C102	Resaturated pyrolized carbon-carbon materials designed for space launch vehicles specified in I.9A.001

	Status: Point in time view as at 24/06/20 inges to legislation: There are currently no known outs	standing effects for the
Cound	cil Regulation (EC) No 423/2007 (repealed). (See end o	of Document for details)
		or sounding rockets specified in I.9A.005. N.B.: See also Military Goods Controls for materials for rockets and missiles.
I.1A.028	<i>ex</i> 1C107* (1C107.a, <i>ex</i> 1C107.b, <i>ex</i> 1C107.c and <i>ex</i> 1C107.d)	Graphite and ceramic materials as follows: Fine grain graphites with a bulk density of 1,72 g/cm ³ or greater, measured at 288 K (15 °C), and having a grain size of 100 μm or less, usable for rocket nozzles and re- entry vehicle nose tips, which can be machined to any of the following products: 1. Cylinders having a diameter of 120 mm or greater and a length of 50 mm or greater; 2. Tubes having an inner diameter of 65 mm or greater and a wall thickness of 25 mm or greater and a length of 50 mm or greater; or 3. Blocks having a size of 120 mm × 120 mm × 50 mm or greater;

<i>Status: Point in time view as at 24/06/2008.</i>			
Changes to legislation: There are currently no known outstanding effects for the			
Council Regulation (EC) No 423/2007 (repealed). (See end of Document for details)			

		N.B.: See also I.0A.012. Pyrolytic or fibrous reinforced graphites, usable for rocket nozzles and reentry vehicle nose tips usable in 'missiles'; N.B.: See also I.0A.012. Ceramic composite materials (dielectric constant less than 6 at any frequency from 100 MHz to 100 GHz) for use in radomes usable in 'missiles'; Bulk machinable silicon-carbide reinforced unfired ceramic, usable for nose tips usable for 'missiles'.
I.1A.029	ex 1C111* (1C111.a.1-3, 1C111.a.4, 1C111.b.1-4 and 1C111.c)	Propellants and constituent chemicals for propellants, other than those specified in I.1A.025, as follows: Propulsive substances: 1. Spherical aluminium powder, other than that specified in the Military Goods Controls, with particles of uniform diameter of less than 200 µm and an aluminium content of 97 % by weight or

more, if at least 10 % of the total weight is made up of particles of less than 63 µm, according to ISO 2591:1988 or national equivalents; Technical Notes: A particle size of 63 µm (ÍSO *R-565*) corresponds to 250 mesh (Tyler) or 230 mesh (ASTM standard E-11). Metal fuels, other than that specified in the Military Goods Controls, in particle sizes of less than 60 µm, whether spherical, atomized, spheroidal, flaked or ground, consisting 97 % by weight or more of

2.

3.	any of the following a. b. c. d. Technica Notes: The natural content of hafnium in the zirconium (typically 2 % to 7 %) is counted with the zirconium Oxidiser substance usable in liquid propellar rocket engines a follows: a. b.	g: Zirconium; Beryllium; Magnesium; or Alloys of the metals specified by (a) to (c) above; 1 <i>f</i> <i>n</i> <i>r</i> <i>n</i> <i>es</i> <i>s</i> <i>c</i> <i>c</i> <i>c</i> <i>c</i> <i>c</i> <i>c</i> <i>c</i> <i>c</i> <i>c</i> <i>c</i>
	follows: a.	Dinitrogen trioxide;
	b.	dioxide/ dinitrogen
		Dinitrogen pentoxide;
	d.	Mixed Oxides of
		Nitrogen (MON);
	Technica Notes:	1

Mixed Oxides of Nitrogen (MOÑ) are solutions of Nitric Oxide (NO) in Dinitrogen Tetroxide/ Nitrogen Dioxide $(N_2O_4/$ NO_2) that can be used in missile systems. There are a range of compositions that can be denoted as MONi or MONij, where i and j are integers representing the percentage of Nitric Oxide in the mixture (e.g., MON3 contains 3 % Nitric Oxide, MON25 25 % Nitric Oxide. An upper limit is MON40, 40 % by weight). N.B.: See Military Goods

	Controls	
	for	
	Inhibited	1
	Red	
	Fuming	
	Nitric	
	Acid	
	(IRFNA),	:
	N.B.: See	
	Military	
	Goods	
	Controls	
	and	
	I.1A.049	
	for	
	Compour	
	composed	
	of fluorin	ie
	and one	
	or more	
	of other	
	halogens	
	oxygen o	
4	nitrogen;	
4.	Hydrazin	
	derivativ	
	as follow	
	a. b.	trimethylhydrazine; tetramethylhydrazine;
	0. C.	N,
	С.	N, N
		diallylhydrazine;
	d.	allylhydrazine;
	e.	ethylene
	0.	dihydrazine;
	f.	monomethylhydrazine
		dinitrate;
	g.	unsymmetrical
	C	dimethylhydrazine
		nitrate;
	h.	hydrazinium
		azide;
	i.	dimethylhydrazinium
		azide;
		N.B.:
		See
		Military
		Goods
		Controls
		for
		Hydrazinium
		nitrate;

	k.	diimido
		oxalic
		acid
		dihydrazine;
	1.	2-
		hydroxyethylhydrazine
		nitrate
		(HEHN);
		N.B.:
		See
		Military
		Goods
		Controls
		for
		Hydrazinium
		perchlorate;
	n.	hydrazinium
		diperchlorate;
	0.	methylhydrazine
		nitrate
		(MHN);
	p.	diethylhydrazine
		nitrate
		(DEHN);
	q.	1,4-
		dihydrazine
		nitrate
		(DHTN);
Polyme		
substan		
1.	Carb	
		inated
		outadiene
	(CTF	
2.	Hydı	
		inated
		outadiene
	(HTI	
	other	
	than	
	speci	
	in the Milit	
	Good	5
3.	Cont	butadiene-
5.		
	acryl acid	
	(PBA	A)·
4.		butadiene-
4.	acryl	
	acid-	
I	ueru-	

1			
		acrylonit	rile
		(PBAN);	
	Other propellant		
	additives and		
	agents:		
	N.B.: See	e Military	
	Goods Co	ontrols	
	for carboranes,		
	decabora	nes,	
	pentabora		
	derivative	es thereof	;
	2.	Triethyle	ne
		glycol	
		dinitrate	
		(TEGDN);
	3.	2-	
		Nitrodipł	nenylamine
		(CAS	
		119-75-5);
	4.	Trimethy	lolethane
		trinitrate	
		(TMETN	()
		(CAS	
		3032-55-	1);
	5.	Diethyler	ne
		glycol	
		dinitrate	
		(DEGDN	I);
	6.	Ferrocen	
		derivativ	
		as follow	
		N.B.: See	e
		Military	
		Goods	
		Controls	
		for	
		catocene	
		b.	Ethyl
			ferrocene;
		C.	Propyl
			ferrocene
			(CAS
			1273-89-8);
			N.B.:
			See
			Military
			Goods
			Controls
			for
			n-
			butyl
			ferrocene;

e. Pentyl ferrocene (CAS 1274-00-6); f. Dicyclopentyl ferrocene; g. Dicyclohexyl ferrocene; h. Diethyl ferrocene; i. Dipropyl ferrocene; j. Dibutyl ferrocene; k. Dihexyl ferrocenes; N.B.: See Military Goods Controls for ferrocene Carboxylic acids; N.B.: See Military Goods Controls for butacene; o. Other ferrocene derivatives usable as rocket propellant burning rate modifiers, other than those specified in the Military Goods Controls.			
i 274-00-6); f. Dicyclopentyl ferrocene; g. Dicyclohexyl ferrocene; h. Diethyl ferrocene; j. Dibutyl ferrocene; k. Dihexyl ferrocene; l. Acetyl ferrocenes; N.B.: See Military Goods Controls for ferrocene Carboxylic acids; N.B.: See Military Goods Controls for ferrocene Carboxylic acids; N.B.: See Military Goods Controls for butacene; o. Other ferrocene derivatives usable as rocket propellant burning rate modifiers, other than those specified in the Military Goods		e.	
f. Dicyclopentyl ferrocene; g. Dicyclohexyl ferrocene; h. Diethyl ferrocene; i. Dipropyl ferrocene; j. Dibutyl ferrocene; k. Dihexyl ferrocenes; N.B.: See Military Goods Controls for ferrocene Carboxylic acids; N.B.: See Military Goods Controls for ferrocene Carboxylic acids; N.B.: See Military Goods Controls for butacene; o. Other ferrocene derivatives usable as rocket propellant burning rate modifiers, other than those specified in the Military Goods			(CAS
g. Dicyclohexyl ferrocene; h. Diethyl ferrocene; i. Dipropyl ferrocene; j. Dibutyl ferrocene; k. Dihexyl ferrocene; l. Acetyl ferrocenes; N.B.: See Military Goods Controls for ferrocene Carboxylic acids; N.B.: See Military Goods Controls for ferrocene Carboxylic acids; N.B.: See Military Goods Controls for butacene; o. Other ferrocene derivatives usable as rocket propellant burning rate modifiers, other than those specified in the Military Goods		_	
g. Dicyclohexyl ferrocene; h. Diethyl ferrocene; i. Dipropyl ferrocene; j. Dibutyl ferrocene; k. Dihexyl ferrocenes; N.B.: See Military Goods Controls for ferrocene Carboxylic acids; N.B.: See Military Goods Controls for ferrocene Carboxylic acids; N.B.: See Military Goods Controls for butacene; o. Other ferrocene derivatives usable as rocket propellant burning rate modifiers, other than those specified in the Military Goods		f.	
h. Diethyl ferrocene; i. Dipropyl ferrocene; j. Dibutyl ferrocene; k. Dihexyl ferrocenes; N.B.: See Military Goods Controls for ferrocene Carboxylic acids; N.B.: See Military Goods Controls for ferrocene Carboxylic acids; N.B.: See Military Goods Controls for butacene; o. Other ferrocene derivatives usable as rocket propellant burning rate modifiers, other than those specified in the Military Goods			
h. Diethyl ferrocene; i. Dipropyl ferrocene; j. Dibutyl ferrocene; k. Dihexyl ferrocene; l. Acetyl ferrocenes; N.B.: See Military Goods Controls for ferrocene Carboxylic acids; N.B.: See Military Goods Controls for ferrocene Carboxylic acids; N.B.: See Military Goods Controls for butacene; o. Other ferrocene derivatives usable as rocket propellant burning rate modifiers, other than those specified in the Military Goods		g.	
i. Dipropyl ferrocene; j. Dibutyl ferrocene; k. Dihexyl ferrocene; l. Acetyl ferrocenes; N.B.: See Military Goods Controls for ferrocene Carboxylic acids; N.B.: See Military Goods Controls for ferrocene Carboxylic acids; N.B.: See Military Goods Controls for butacene; o. Other ferrocene derivatives usable as rocket propellant burning rate modifiers, other than those specified in the Military Goods		h	
i. Dipropyl ferrocene; j. Dibutyl ferrocene; k. Dihexyl ferrocene; l. Acetyl ferrocenes; N.B.: See Military Goods Controls for ferrocene Carboxylic acids; N.B.: See Military Goods Controls for ferrocene Carboxylic acids; N.B.: See Military Goods Controls for butacene; o. Other ferrocene derivatives usable as rocket propellant burning rate modifiers, other than those specified in the Military Goods		11.	
j. Dibutyl ferrocene; j. Dibutyl ferrocene; k. Dihexyl ferrocene; l. Acetyl ferrocenes; N.B.: See Military Goods Controls for ferrocene Carboxylic acids; N.B.: See Military Goods Controls for butacene; o. Other ferrocene derivatives usable as rocket propellant burning rate modifiers, other than those specified in the Military Goods		i	
j. Dibutyl ferrocene; k. Dihexyl ferrocene; l. Acetyl ferrocenes; N.B.: See Military Goods Controls for ferrocene Carboxylic acids; N.B.: See Military Goods Controls for butacene; o. Other ferrocene derivatives usable as rocket propellant burning rate modifiers, other than those specified in the Military Goods		1.	~ ~ ~
k. Dihexyl ferrocene; l. Acetyl ferrocenes; N.B.: See Military Goods Controls for ferrocene Carboxylic acids; N.B.: See Military Goods Controls for butacene; o. Other ferrocene derivatives usable as rocket propellant burning rate modifiers, other than those specified in the Military Goods		i.	
k. Dihexyl ferrocene; l. Acetyl ferrocenes; N.B.: See Military Goods Controls for ferrocene Carboxylic acids; N.B.: See Military Goods Controls for butacene; o. Other ferrocene derivatives usable as rocket propellant burning rate modifiers, other than those specified in the Military Goods		J.	
I. Acetyl ferrocenes; N.B.: See Military Goods Controls for ferrocene Carboxylic acids; N.B.: See Military Goods Controls for butacene; o. Other ferrocene derivatives usable as rocket propellant burning rate modifiers, other than those specified in the Military Goods		k.	
ferrocenes; N.B.: See Military Goods Controls for ferrocene Carboxylic acids; N.B.: See Military Goods Controls for butacene; o. Other ferrocene derivatives usable as rocket propellant burning rate modifiers, other than those specified in the Military Goods			
N.B.: See Military Goods Controls for ferrocene Carboxylic acids; N.B.: See Military Goods Controls for butacene; o. Other ferrocene derivatives usable as rocket propellant burning rate modifiers, other than those specified in the Military Goods		l.	Acetyl
See Military Goods Controls for ferrocene Carboxylic acids; N.B.: See Military Goods Controls for butacene; o. Other ferrocene derivatives usable as rocket propellant burning rate modifiers, other than those specified in the Military Goods			
Military Goods Controls for ferrocene Carboxylic acids; N.B.: See Military Goods Controls for butacene; o. Other ferrocene derivatives usable as rocket propellant burning rate modifiers, other than those specified in the Military Goods			
Goods Controls for ferrocene Carboxylic acids; N.B.: See Military Goods Controls for butacene; o. Other ferrocene derivatives usable as rocket propellant burning rate modifiers, other than those specified in the Military Goods			
Controls for ferrocene Carboxylic acids; N.B.: See Military Goods Controls for butacene; o. Other ferrocene derivatives usable as rocket propellant burning rate modifiers, other than those specified in the Military Goods			Military
for ferrocene Carboxylic acids; N.B.: See Military Goods Controls for butacene; o. Other ferrocene derivatives usable as rocket propellant burning rate modifiers, other than those specified in the Military Goods			
ferrocene Carboxylic acids; N.B.: See Military Goods Controls for butacene; o. Other ferrocene derivatives usable as rocket propellant burning rate modifiers, other than those specified in the Military Goods			
Carboxylic acids; N.B.: See Military Goods Controls for butacene; o. Other ferrocene derivatives usable as rocket propellant burning rate modifiers, other than those specified in the Military Goods			
acids; N.B.: See Military Goods Controls for butacene; o. Other ferrocene derivatives usable as rocket propellant burning rate modifiers, other than those specified in the Military Goods			
N.B.: See Military Goods Controls for butacene; o. Other ferrocene derivatives usable as rocket propellant burning rate modifiers, other than those specified in the Military Goods			
Military Goods Controls for butacene; o. Other ferrocene derivatives usable as rocket propellant burning rate modifiers, other than those specified in the Military Goods			
Goods Controls for butacene; o. Other ferrocene derivatives usable as rocket propellant burning rate modifiers, other than those specified in the Military Goods			See
Controls for butacene; o. Other ferrocene derivatives usable as rocket propellant burning rate modifiers, other than those specified in the Military Goods			Military
o. Other ferrocene derivatives usable as rocket propellant burning rate modifiers, other than those specified in the Military Goods			
o. Other ferrocene derivatives usable as rocket propellant burning rate modifiers, other than those specified in the Military Goods			
o. Other ferrocene derivatives usable as rocket propellant burning rate modifiers, other than those specified in the Military Goods			
ferrocene derivatives usable as rocket propellant burning rate modifiers, other than those specified in the Military Goods			
derivatives usable as rocket propellant burning rate modifiers, other than those specified in the Military Goods		0.	
usable as rocket propellant burning rate modifiers, other than those specified in the Military Goods			
as rocket propellant burning rate modifiers, other than those specified in the Military Goods			
rocket propellant burning rate modifiers, other than those specified in the Military Goods			
burning rate modifiers, other than those specified in the Military Goods			
burning rate modifiers, other than those specified in the Military Goods			propellant
modifiers, other than those specified in the Military Goods			
other than those specified in the Military Goods			
than those specified in the Military Goods			
those specified in the Military Goods			
specified in the Military Goods			
in the Military Goods			
the Military Goods			· ·
Military Goods			
Goods			
	I		

	Status: Point in time view as a inges to legislation: There are currently no k cil Regulation (EC) No 423/2007 (repealed).	nown outstanding effects for the
		Note: For propellants and constituent chemicals for propellants not specified in I.1A.029, see the Military Goods Controls.
I.1A.030	1C116	Maraging steels (steels generally characterised by high nickel, very low carbon content and the use of substitutional elements or precipitates to produce age- hardening) having an ultimate tensile strength of 1 500 MPa or greater, measured at 293 K (20 °C), in the form of sheet, plate or tubing with a wall or plate thickness equal to or less than 5 mm. N.B.: See also I.1A.035.
I.1A.031	ex 1C117*	Tungsten, molybdenum and alloys of these metals in the form of uniform spherical or atomized particles of 500 micrometre diameter or less with a purity of 97 % or greater for fabrication of motor components, usable in 'missiles' (i.e., heat shields, nozzle substrates, nozzle throats and thrust vector control surfaces).
I.1A.032	1C118	Titanium-stabilised duplex stainless steel (Ti-DSS) having all of the following: a.a.Having all of the following characteristics:1.Containing 17,0-23,0 weight percent chromium and 4,5-7,0 weight percent nickel;2.Having a titanium content of greater

		than 0,10
		weight
		percent;
		and
	3.	A ferritic-
	5.	austenitic
		microstructure
		(also
		referred
		to as a
		two-phase
		microstructure)
		of which
		at least 10
		percent is
		austenite
		by volume
		(according
		to ASTM
		E-1181-87
		or national
		equivalents);
		and
b.	Having a	
	following	g forms:
	1.	Ingots
		or bars
		having
		a size of
		100 mm
		or more
		in each
		dimension;
	2.	Sheets
		having a
		width of
		600 mm
		or more
		and a
		thickness
		of 3 mm
		or less; or
	3.	Tubes
	5.	having
		an outer
		diameter
		of 600
		mm or
		more and
		a wall
		thickness
		of 3 mm
		or less.

a.	having the fo	inium alloys g both of llowing cteristics: 'Capable of' an ultimate tensile strength of 460 MPa
	charac	cteristics: 'Capable of' an ultimate tensile strength of
		'Capable of' an ultimate tensile strength of
	1.	of an ultimate tensile strength of
		ultimate tensile strength of
		tensile strength of
		strength of
		or more at
		293 K (20
	•	°C); and
	2.	In the
		form of
		tubes or
		cylindrical solid
		forms
		(including
		forgings)
		with an
		outside
		diameter
		of more
		than 75
		mm;
b.	Titani	um alloys
		g both of
		llowing
		eteristics:
	1.	'Capable
		of' an
		ultimate
		tensile
		strength of 900 MPa
		or more at
		293 K (20
		°C); and
	2.	In the
		form of
		tubes or
		cylindrical
		solid
		forms
		(including
		forgings)
		with an
		outside
		diameter of more
	b.	having the fol

		Technical Note The phrase allo of' encompasse or after heat tre	ys 'capable s alloys before
I.1A.034	1C210 and <i>ex</i> 1C010.a	 or fila mater having the fo charaot 1. 2. Note: does 1. 2. Note: does 1. arami or fila mater 0,25 p more an est surface b. Glass or fila mater having the fo 	epregs, e specified in llows: on or d 'fibrous mentary ials' g either of llowing cteristics: A 'specific modulus' of 12,7 × 10^6 m or greater; or A 'specific tensile strength' of 235 × 10^3 m or greater; <i>I.1A.034.a.</i> not prohibit d 'fibrous mentary ials' having percent or by weight of er based fibre ce modifier; 'fibrous mentary

<i>Status: Point in time view as at 24/06/2008.</i>
Changes to legislation: There are currently no known outstanding effects for the
Council Regulation (EC) No 423/2007 (repealed). (See end of Document for details)

		 2. A 'specific tensile strength' of 76,2 × 10³ m or greater; c. Thermoset resin impregnated continuous 'yarns', 'rovings', 'tows' or 'tapes' with a width of 15 mm or less (prepregs), made from carbon or glass 'fibrous or filamentary materials' specified in I.1A.034 or .b. Technical Notes: The resin forms the matrix of the composite. Note: In I.1A.034, 'fibrous or filamentary materials' is restricted to continuous 'monofilaments', 'yarns', 'rovings', 'tows' or 'tapes'.
I.1A.035	1C216	Maraging steel, other than that specified in I.1A.030, 'capable of' an ultimate tensile strength of 2 050 MPa or more, at 293 K (20 °C). Note: I.1A.035 does not prohibit forms in which all linear dimensions are 75 mm or less. Technical Notes: The phrase maraging steel 'capable of' encompasses maraging steel before or after heat treatment.
I.1A.036	1C225	Boron enriched in the boron-10 (¹⁰ B) isotope to greater than its natural isotopic abundance, as follows: elemental boron, compounds, mixtures containing boron, manufactures thereof,

	Status: Point in time view a	Document Generated: 2024-06-09 ts at 24/06/2008.
	ges to legislation: There are currently no Regulation (EC) No 423/2007 (repealed	o known outstanding effects for the
	Regulation (EC) 110 425/2007 (repeared	a). (See that of Document for actually
		waste or scrap of any of the foregoing. Note: In I.1A.036 mixtures containing boron include boron loaded materials. Technical Notes: The natural isotopic abundance of boron-10 is approximately 18,5 weight per cent (20 atom per cent).
I.1A.037	1C226	Tungsten, tungsten carbide, and alloys containing more than 90 % tungsten by weight, having both of the following characteristics: a.a.In forms with a hollow cylindrical symmetry (including cylinder segments) with an inside diameter between 100 mm and 300 mm; and b.b.A mass greater than 20 kg.Note: I.1A.037 does not prohibit manufactures specially designed as weights or gamma-ray collimators
I.1A.038	1C227	Calcium having both of the following characteristics: a. Containing less than 1 000 parts per million by weight of metallic impurities other than magnesium; and b. Containing less than 10 parts per million by weight of boron.
I.1A.039	1C228	Magnesium having both of the following characteristics: a. Containing less than 200 parts per million by weight of metallic impurities other than calcium; and

		b. Containing less than 10 parts per million by weight of boron.
I.1A.040	1C229	Bismuth having both of the following characteristics: a. A purity of 99,99 % or greater by weight; and b. Containing less than 10 parts per million by weight of silver.
I.1A.041	1C230	 Beryllium metal, alloys containing more than 50 % beryllium by weight, beryllium compounds, manufactures thereof, and waste or scrap of any of the foregoing. Note: I.1A.041 does not prohibit the following: a. Metal windows for X-ray machines, or for bore-hole logging devices; b. Oxide shapes in fabricated or semi- fabricated forms specially designed for electronic component parts or as substrates for electronic circuits; c. Beryl (silicate of beryllium and aluminium) in the form of emeralds or aquamarines.
I.1A.042	1C231	Hafnium metal, alloys containing more than 60 % hafnium by weight, hafnium compounds containing more than 60 % hafnium by weight, manufactures thereof, and waste or scrap of any of the foregoing.
I.1A.043	1C232	Helium-3 (³ He), mixtures containing helium-3, and products or devices containing any of the foregoing.

		Note: I.1A.043 does not prohibit a product or device containing less than 1 g of helium-3.
I.1A.044	1C233	Lithium enriched in the lithium-6 (⁶ Li) isotope to greater than its natural isotopic abundance, and products or devices containing enriched lithium, as follows: elemental lithium, alloys, compounds, mixtures containing lithium, manufactures thereof, waste or scrap of any of the foregoing. Note: I.1A.044 does not prohibit thermoluminescent dosimeters. Technical Notes: The natural isotopic abundance of lithium-6 is approximately 6,5 weight per cent (7,5 atom per cent).
I.1A.045	1C234	Zirconium with a hafnium content of less than 1 part hafnium to 500 parts zirconium by weight, as follows: metal, alloys containing more than 50 % zirconium by weight, compounds, manufactures thereof, waste or scrap of any of the foregoing. Note: I.1A.045 does not prohibit zirconium in the form of foil having a thickness of 0,10 mm or less.
I.1A.046	1C235	Tritium, tritium compounds, mixtures containing tritium in which the ratio of tritium to hydrogen atoms exceeds 1 part in 1 000, and products or devices containing any of the foregoing. Note: I.1A.046 does not prohibit a product or device containing less than 1,48 × 10^3 GBq (40 Ci) of tritium.

I.1A.047	1C236	 Alpha-emitting radionuclides having an alpha half-life of 10 days or greater but less than 200 years, in the following forms: a. Elemental; b. Compounds having a total alpha activity of 37 GBq/kg (1 Ci/ kg) or greater; c. Mixtures having a total alpha activity of 37 GBq/kg (1 Ci/ kg) or greater; d. Products or devices containing any of the foregoing. Note: 1.1A.047 does not prohibit a product or device containing less than 3,7 GBq (100 millicuries) of alpha activity.
I.1A.048	1C237	Radium-226 (226 Ra), radium-226 alloys, radium-226 compounds, mixtures containing radium-226, manufactures therof, and products or devices containing any of the foregoing.Note: I.1A.048 does not prohibit the following: a.a.Medical applicators; b.b.A product or device containing less than 0,37 GBq (10 millicuries) of radium-226.
I.1A.049	1C238	Chlorine trifluoride (ClF ₃).
I.1A.050	1C239	high-explosives, other than those specified in the Military Goods Controls, or substances or mixtures containing more than 2 % by weight thereof, with a crystal density greater than 1,8 g/ cm^3 and having a detonation velocity greater than 8 000 m/ s.

I.1A.051	1C240	Nickel powder and porous nickel metal, other than those specified in I.0A.013, as follows:
		a. Nickel powder having both of the following characteristics: 1. A nickel
		purity content of 99,0 % or
		greater by weight; and
		2. A mean particle size of less
		than 10 micrometres measured
		by American Society for Testing
		and Materials (ASTM)
		B330 standard;
		b. Porous nickel metal produced from materials specified
		in I.1A.051.a. Note: I.1A.051 does not prohibit the following:
		a. Filamentary nickel powders;
		b. Single porous nickel sheets with an area of 1 000 cm ² per
		sheet or less. Technical Notes:
		<i>I.1A.051.b. refers to porous</i> <i>metal formed by compacting</i> <i>and sintering the materials in</i>
		<i>I.1A.051.a. to form a metal material with fine pores interconnected throughout</i>
		the structure.

I.1B

TECHNOLOGY, INCLUDING SOFTWARE

No	Relevant item(s) from Annex to Regulation (EC) No 1183/2007	Description
I.1B.001	ex 1D001	'Software' specially designed or modified for the 'development', 'production' or 'use' of equipment specified in I.1A.006.
I.1B.002	1D101	'Software' specially designed or modified for the 'use' of goods specified in I.1A.007 to I.1A.009, or I.1A.011 to I.1A.013.
I.1B.003	1D103	'Software' specially designed for analysis of reduced observables such as radar reflectivity, ultraviolet/ infrared signatures and acoustic signatures.
I.1B.004	1D201	'Software' specially designed for the 'use' of goods specified in I.1A.014.
I.1B.005	1E001	'Technology' according to the General Technology Note for the 'development' or 'production' of equipment or materials specified in I.1A.006 to I.1A.051.
I.1B.006	1E101	'Technology' according to the General Technology Note for the 'use' of goods specified in I.1A.001, I.1A.006 to I.1A.013, I.1A.026, I.1A.028, I.1A.029 to I.1A.032, I.1B.002 or I.1B.003.
I.1B.007	<i>ex</i> 1E102	'Technology' according to the General Technology Note for the 'development' of 'software' specified in I.1B.001 to I.1B.003.
I.1B.008	1E103	'Technology' for the regulation of temperature, pressure or atmosphere in autoclaves or hydroclaves,

		when used for the 'production' of 'composites' or partially processed 'composites'.
I.1B.009	1E104	'Technology' relating to the 'production' of pyrolytically derived materials formed on a mould, mandrel or other substrate from precursor gases which decompose in the 1 573 K (1 300 °C) to 3 173 K (2 900 °C) temperature range at pressures of 130 Pa to 20 kPa. Note: I.1B.009 includes 'technology' for the composition of precursor gases, flow-rates and process control schedules and parameters.
I.1B.010	<i>ex</i> 1E201	'Technology' according to the General Technology Note for the 'use' of goods specified in I.1A.002 to I.1A.005, I.1A.014 to I.1A.023, I.1A.024.b., I.1A.033 to I.1A.051, or I.1B.004.
I.1B.011	1E202	'Technology' according to the General Technology Note for the 'development' or 'production' of goods specified in I.1A.002 to I.1A.005.
I.1B.012	1E203	'Technology' according to the General Technology Note for the 'development' of 'software' specified in I.1B.004.

I.2 MATERIALS PROCESSING

I.2A

GOODS

No	Relevant item(s) from Annex to Regulation (EC) No 1183/2007	Description
I.2A.001	ex 2A001*	 Anti-friction bearings and bearing systems, as follows, and components therefor: <i>Note: I.2A.001 does not</i> <i>prohibit balls with tolerances</i> <i>specified by the manufacturer</i> <i>in accordance with ISO 3290</i> <i>as grade 5 or worse.</i> Radial ball bearings having all tolerances specified by the manufacturer in accordance with ISO 492 Tolerance Class 2 (or ANSI/ABMA Std 20 Tolerance Class ABEC-9 or RBEC-9, or other national equivalents), or better and having all of the following characteristics: a. An inner ring bore diameter between 12 and 50 mm; b. An outer ring outside diameter between 25 and 100 mm; and c. A width between 10 and 20 mm.
I.2A.002	2A225	Crucibles made of materials resistant to liquid actinide metals, as follows: a. Crucibles having both of the following characteristics: 1. A volume of between 150 cm ³ and 8 000 cm ³ ; and 2. Made of or coated

authorities of the Member State in which they are established.

with any of the following materials, having a purity of 98 % or greater by weight: a. Calcium fluoride (CaF ₂); b. Calcium zirconate (metazirconate) (CaZrO ₃); c. Cerium sulphide (Ce ₂ S ₃); d. Erbium oxide (erbia) (Er ₂ O ₃); e. Hafnium oxide (hafnia) (HfO ₂); f. Magnesium oxide (MgO); g. Nitrided niobium- titanium- tungsten alloy (approximately 50 % Nb, 30 % Nb, 30 % Nb, 30 % Nitriab (Y ₂ O ₃); h. Yttrium oxide (yttria) (Y ₂ O ₃); h. Yttrium oxide (yttria) (Y ₂ O ₃); h. Yttrium	I	:41	
re with ISO 2302 (1997) should consult the competent			iny
materials, having a purity of 98 % or greater by weight: a. Calcium fluoride (CaF ₂); b. Calcium zirconate (metazirconate) (CaZrO ₃); c. Cerium sulphide (Ce ₂ S ₃); d. Erbium oxide (erbia) (Er ₂ O ₃); e. Hafnium oxide (hafnia) (HfO ₂); f. Magnesium oxide (MgO); g. Nitrided niobium- titanium- tungsten alloy (approximately 50 % Nb, 30 % Nb, 30 % Nb, 30 % Nb, 30 %			
having a purity of 98 % or greater by weight: a. Calcium fluoride (CaF ₂); b. Calcium zirconate (metazirconate) (CaZrO ₃); c. Cerium sulphide (Ce ₂ S ₃); d. Erbium oxide (erbia) (Er ₂ O ₃); e. Hafnium oxide (hfnia) (HfO ₂); f. Magnesium oxide (MgO); g. Nitrided niobium- titanium- tungsten alloy (approximately 50 % Nb, 30 % Ti, 20 % Nb, 30 % Ti, 20 % Nb, 30 %			
purity of 98 % or greater by weight: a. Calcium fluoride (CaF ₂); b. Calcium zirconate (metazirconate) (CaZrO ₃); c. Cerium sulphide (Ce ₂ S ₃); d. Erbium oxide (erbia) (Er ₂ O ₃); e. Hafnium oxide (hafnia) (HfO ₂); f. Magnesium oxide (MgO); g. Nitrided niobium- titanium- tungsten alloy (approximately 50 % Nb, 30 % Nb, 30 % Nb, 30 % Nitrium wite (YzO ₃); e. evith ISO 230/2 (1997) should consult the competent			-
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			
$\begin{tabular}{ c c c c } \hline greater by weight: & a. & Calcium fluoride (CaF_2); & b. & Calcium zirconate (metazirconate) (CaZrO_3); & c. & Cerium sulphide (Ce_2S_3); & d. & Erbium oxide (erbia) (Er_2O_3); & e. & Hafnium oxide (hafnia) (HfO_2); & f. & Magnesium oxide (hafnia) (HfO_2); & f. & Magnesium oxide (MgO); & g. & Nitrided niobium-titanium-tungsten alloy (approximately 50 % Nb, 30 % Ti, 20 % % Nb; 30 % Ti, 20 % % & N); & h. & Yttrium oxide (Yttria) (YzO_3); & or & te with ISO 2302 (1997) should consult the competent the source of the$			
weight: a. Calcium fluoride (CaF ₂); b. Calcium zirconate (metazirconate) (CaZrO ₃); c. Cerium sulphide (Ce ₂ S ₃); d. Erbium oxide (erbia) (Er ₂ O ₃); e. Hafnium oxide (hafnia) (HfO ₂); f. Magnesium oxide (MgO); g. Nitrided niobium- titanium- tungsten alloy (approximately 50 % Nb, 30 % Nc, Nc, Nc, Nc, Nc, Nc, Nc, Nc,		98 %	or
a. Calcium fluoride (CaF ₂); b. Calcium zirconate (metazirconate) (CaZrO ₃); c. Cerium sulphide (Ce ₂ S ₃); d. Erbium oxide (erbia) (Er ₂ O ₃); e. Hafnium oxide (hafnia) (HfO ₂); f. Magnesium oxide (MgO); g. Nitrided niobium- titanium- tungsten alloy (approximately 50 % Nb, 30 % Ncritian (Y2O ₃); er te with ISO 230/2 (1997) should consult the competent		greate	r by
$fluoride (CaF_2);$ b. Calcium zirconate (metazirconate) (CaZrO_3); c. Cerium sulphide (Ce_2S_3); d. Erbium oxide (erbia) (Er_2O_3); e. Hafnium oxide (hafnia) (HfO_2); f. Magnesium oxide (MgO); g. Nitrided niobium-titanium-tungsten alloy (MgO); g. Nitrided niobium-titanium-tungsten alloy % Nb, 300 % Nb, 300 % Ti, 200 % Nb, 300 % Ti, 200 % Nb; 300 % Nb, 300 % Ti, 200 % Nb; 300 % Nb; 300 % Ti, 200 % Nb; 300		weigh	t:
$(CaF_2);$ b. Calcium zirconate (metazirconate) (CaZrO_3); c. Cerium sulphide (Ce ₂ S ₃); d. Erbium oxide (erbia) (Er ₂ O ₃); e. Hafnium oxide (hafnia) (HfO ₂); f. Magnesium oxide (MgO); g. Nitrided niobium- titanium- tungsten alloy (approximately 50 % Nb, 30 % Ti, 20 % Nb, 30 % Ti, 20 % Nb, 30 % Ti, 20 % Nb, 30 % Nb, 30 % Nb, 30 % Ti, 20 % Nb, 30 % Ti, 20 % Nb, 30 % Ti, 20 % Nb, 30 Nb, 30 Nb		a.	Calcium
b. Calcium zirconate (metazirconate) (CaZrO ₃); c. Cerium sulphide (Ce ₂ S ₃); d. Erbium oxide (erbia) (Er ₂ O ₃); e. Hafnium oxide (hafnia) (HfO ₂); f. Magnesium oxide (MgO); g. Nitrided niobium- titanium- tungsten alloy (approximately 50 % Nb, 30 % Ti, 20 % Nb, 30 % Ti, 20 % Nb, 30 Nb, 30			fluoride
b. Calcium zirconate (metazirconate) (CaZrO ₃); c. Cerium sulphide (Ce ₂ S ₃); d. Erbium oxide (erbia) (Er ₂ O ₃); e. Hafnium oxide (hafnia) (HfO ₂); f. Magnesium oxide (MgO); g. Nitrided niobium- titanium- tungsten alloy (approximately 50 % Nb, 30 % Ti, 20 % Nb, 30 % Ti, 20 % Nb, 30 Nb, 30			(CaF ₂);
$\begin{array}{c c} zirconate & (metazirconate) \\ (CaZrO_3); \\ c. & Cerium \\ sulphide & (Ce_2S_3); \\ d. & Erbium & oxide \\ (erbia) & (Er_2O_3); \\ e. & Hafnium & oxide \\ (hafnia) & (HfO_2); \\ f. & Magnesium & oxide \\ (MgO); \\ g. & Nitrided & niobium-titanium-tungsten & alloy \\ (approximately & 50 & \% & Nb, \\ 30 & \% & Ti, & 20 & \% & \\ Nb, & 0, & 0, & 0 & \% & \\ Nb, & 0, & 0, & 0 & \% & \\ $		b.	
$(metazirconate) \\ (CaZrO_3); (C$			
$(CaZrO_3);$ c. Cerium sulphide (Ce ₂ S ₃); d. Erbium oxide (erbia) (Er ₂ O ₃); e. Hafnium oxide (hafnia) (HfO ₂); f. Magnesium oxide (MgO); g. Nitrided niobium- titanium- tungsten alloy (approximately 50 % Nb, 30 % Ti, 20 % Nb, 30 % Ti, 20 % Nb, 30 % Ti, 20 % Nb, 30 % Ti, 20 % Nb, 30 % Ti, 20 % Nb, 30 % Ti, 20 % Nb, 30 % Ti, 20 % Nb, 30 % Ti, 20 % Nb, 30 % Ti, 20 % Nb, 30 % Ti, 20 % Nb, 30 % Ti, 20 % Nb, 30 % Ti, 20 % Nb, 30 % Ti, 20 % Nb, 30 % Ti, 20 % Nb, 30 % Ti, 20 % Nb, 30 % Ti, 20 % Nb, 30 % Ti, 20 % Nb, 30 % Nb, 30 % Nb, 30 % Nb, 30 % Ti, 20 % Nb, 30 % Ti, 20 % Nb, 30 % Ti, 20 % Nb, 30 % Ti, 20 % Nb, 30 % Ti, 20 % Nb, 30 % Ti, 20 % Nb, 30 % Ti, 20 % Nb, 30 % Ti, 20 % Nb, 30 % Ti, 20 % Nb, 30 % Ti, 20 % Nb, 30 % Ti, 20 % Nb, 30 % Nb, Nb, Nb, Nb, Nb, Nb, Nb, Nb,			
c. Cerium sulphide $(Ce_2S_3);$ d. Erbium oxide $(erbia)$ $(Er_2O_3);$ e. Hafnium oxide $(hafnia)$ $(HfO_2);$ f. Magnesium oxide $(MgO);$ g. Nitrided niobium-titanium-tungsten alloy (approximately 50 % Nb, 30 % Ti, 20 % % Nb, 30 % Ti, 20 % Nb, 30 % Nb, 30 % Ti, 20 % Nb, 30 % Ti, 20 % Nb, 30 % N			
sulphide (Ce ₂ S ₃); d. Erbium oxide (erbia) (Er ₂ O ₃); e. Hafnium oxide (hafnia) (HfO ₂); f. Magnesium oxide (MgO); g. Nitrided niobium- titanium- tungsten alloy (approximately 50 % Nb, 30 % Nb, 30 % Ti, 20 % w Nb, 30 % tri, 20 % w Nb, 30 % tri, 20 % w Nb, 30 % tri, 20 %		C	
$(Ce_2S_3);$ d. Erbium oxide (erbia) (Er ₂ O ₃); e. Hafnium oxide (hafnia) (HfO ₂); f. Magnesium oxide (MgO); g. Nitrided niobium- titanium- tungsten alloy (approximately 50 % Nb, 30 % Nb, 30 % Nb, 30 % Ti, 20 % W); h. Yttrium oxide (Y ₂ O ₃); or		ν.	
d. Erbium oxide (erbia) (Er ₂ O ₃); e. Hafnium oxide (hafnia) (HfO ₂); f. Magnesium oxide (MgO); g. Nitrided niobium- titanium- tungsten alloy (approximately 50 % Nb, 30 % Nb, 30 % Nb, 30 % Nb, 30 % Nb, 30 % Nb, 30 % Nb, 30 % Nb, 30 % Nb, 30 % W); h. Yttrium oxide (Y ₂ O ₃); or			
$\begin{tabular}{ c c c c } & oxide & (erbia) & (Er_2O_3); \\ e. & Hafnium & oxide & (hafnia) & (HfO_2); \\ f. & Magnesium & oxide & (MgO); \\ g. & Nitrided & niobium-titanium-tungsten & alloy & (approximately $50 & \% & Nb, $30 & \% & Nb, $30 & \% & Nb, $30 & \% & Nitri, $20 & \% & Nb, $30 & \% & Nitri, $20 & \% & Nitr$		d	
$(erbia) (Er_2O_3); (e. Hafnium oxide (hafnia) (HfO_2); f. Magnesium oxide (MgO); g. Nitrided niobium-titanium-tungsten alloy (approximately 50 % Nb, 30 % Ti, 20 % Nb, 30 % Ti, 20 % W); h. Yttrium oxide (yttria) (Y_2O_3); or ex with ISO 230/2 (1997) should consult the competent$		u.	
$(Er_2O_3);$ e. Hafnium oxide (hafnia) (HfO_2); f. Magnesium oxide (MgO); g. Nitrided niobium- titanium- tungsten alloy (approximately 50 % Nb, 30 % Nb, 30 % Nb, 30 % W); h. Yttrium oxide (yttria) (Y_2O_3); or			
e. Hafnium oxide (hafnia) (HfO ₂); f. Magnesium oxide (MgO); g. Nitrided niobium- titanium- tungsten alloy (approximately 50 % Nb, 30 % Ti, 20 % W); h. Yttrium oxide (yttria) (Y ₂ O ₃); or			
$(hafnia) \\ (hfO_2); \\ f. Magnesium \\ oxide \\ (MgO); \\ g. Nitrided \\ niobium-titanium-tungsten \\ alloy \\ (approximately \\ 50 \\ \% \\ Nb, \\ 30 \\ \% \\ Nc, \\ Nc,$			
$(hafnia) (HfO_2);$ f. Magnesium oxide (MgO); g. Nitrided niobium- titanium- tungsten alloy (approximately 50 % Nb, 30 % Nb, 30 % W); h. Yttrium oxide (yttria) (Y_2O_3); or we with ISO 230/2 (1997) should consult the competent		e.	
$(HfO_2);$ f. Magnesium oxide (MgO); g. Nitrided niobium- titanium- tungsten alloy (approximately 50 % Nb, 30 % Nb, 30 % Nb, 30 % W); h. Yttrium oxide (yttria) (Y_2O_3); or we with ISO 230/2 (1997) should consult the competent			
f. Magnesium oxide (MgO); g. Nitrided niobium- titanium- tungsten alloy (approximately 50 % Nb, 30 % Ti, 20 % W); h. Yttrium oxide (yttria) (Y2O3); or			
se with ISO 230/2 (1997) should consult the competent		2	
g. (MgO); g. Nitrided niobium- titanium- tungsten alloy (approximately 50 % Nb, 30 % Ti, 20 % W); h. Yttrium oxide (yttria) (Y ₂ O ₃); or		t.	
g. Nitrided niobium- titanium- tungsten alloy (approximately 50 % Nb, 30 % Ti, 20 % W); h. Yttrium oxide (yttria) (Y ₂ O ₃); or			
niobium- titanium- tungsten alloy (approximately 50 % Nb, 30 % Ti, 20 % W); h. Yttrium oxide (yttria) (Y ₂ O ₃); or			
titanium- tungsten alloy (approximately 50 % Nb, 30 % Ti, 20 % W); h. Yttrium oxide (yttria) (Y ₂ O ₃); or		g.	
tungsten alloy (approximately 50 % Nb, 30 % Ti, 20 % W); h. Yttrium oxide (yttria) (Y ₂ O ₃); or e with ISO 230/2 (1997) should consult the competent			
$\begin{array}{c c} & alloy\\ (approximately\\ 50\\ \%\\ Nb,\\ 30\\ \%\\ Ti,\\ 20\\ \%\\ W);\\ h. & Yttrium\\ oxide\\ (yttria)\\ (Y_2O_3);\\ or\\ \end{array}$			
$(approximately 50 \\ \% \\ Nb, 30 \\ \% \\ Ti, 20 \\ \% \\ W); \\ h. Yttrium \\ oxide \\ (yttria) \\ (Y_2O_3); \\ or \\ ewith ISO 230/2 (1997) should consult the competent \\ (approximately 50 \\ \% \\ Wb, \\$			
50 % Nb, 30 % Ti, 20 % W); h. Yttrium oxide (yttria) (Y ₂ O ₃); or			
% Nb, 30 % Ti, 20 % W); h. Yttrium oxide (yttria) (Y2O3); or te with ISO 230/2 (1997) should consult the competent			
$\begin{array}{c c} & Nb, \\ 30 \\ \% \\ Ti, \\ 20 \\ \% \\ W); \\ h. & Yttrium \\ oxide \\ (yttria) \\ (Y_2O_3); \\ or \end{array}$			
$\begin{array}{c c} & 30 \\ & \% \\ & Ti, \\ 20 \\ & \% \\ W); \\ h. & W); \\ h. & Yttrium \\ oxide \\ (yttria) \\ (Y_2O_3); \\ or \\ \end{array}$			
$\begin{array}{c c} & & & & & & & \\ & & & & & & \\ & & & & $			
$\begin{array}{c c} & Ti, \\ 20 \\ \% \\ W); \\ h. & Yttrium \\ oxide \\ (yttria) \\ (Y_2O_3); \\ or \end{array}$			
$\begin{array}{c c} & & & & & & & \\ & & & & & & \\ & & & & $			
w); h. Yttrium oxide (yttria) (Y ₂ O ₃); or			
w); h. Yttrium oxide (yttria) (Y ₂ O ₃); or			
h. Yttrium oxide (yttria) (Y ₂ O ₃); or			
oxide (yttria) (Y2O3); or we with ISO 230/2 (1997) should consult the competent		-	
(yttria) (Y ₂ O ₃); or ew with ISO 230/2 (1997) should consult the competent		h.	
(Y ₂ O ₃); or we with ISO 230/2 (1997) should consult the competent			
e with ISO 230/2 (1997) should consult the competent			
e with ISO 230/2 (1997) should consult the competent			$(Y_2O_3);$
			or
		nsult the competent	

Manufacturers calculating positioning accuracy in accordance with ISC authorities of the Member State in which they are established.

a

			i.	Zirconium
				oxide (zirconia)
				(ZrO ₂);
	b.	Crucibles	S	
		having b		
		the follow		
		character		
		1.	A volum	e
			of	
			between	
			50 cm^3	
			and 2 00	0
			cm ³ ; and	
		2.	Made	
			of or	
			lined wit	
			tantalum	,
			having a	
			purity of	
			99,9 % o	
			greater b	у
	0	Crucibles	weight;	
	c.		following	T
		character		5
		1.	A volum	e
		1.	of	•
			between	
			50 cm^3	
			and 2 00	0
			cm ³ ;	
		2.	Made	
			of or	
			lined wit	h
			tantalum	,
			having a	
			purity of	
			98 % or	
			greater b	У
			weight;	
		3.	and Coated	
		Ј.	with	
			tantalum	
			carbide,	
			nitride,	
			boride,	
			or any	
y in accordance with ISO 230/2 (1	1007) should	consult the e		

		combinatio thereof
I.2A.003	2A226	Valves having all of the following characteristics:a.A 'nominal size' of 5 mm or greater;b.Having a bellows seal; andc.Wholly made
I.2A.004	<i>ex</i> 2B001.a*, 2B001.d	 Machine tools and any combination thereof, for removing (or cutting) metals, ceramics or 'composites', which, according to the manufacturer's technical specification, can be equipped with electronic devices for 'numerical control', and specially designed components as follows: N.B.: See also I.2A.016. Note 1: I.2A.004 does not prohibit special purpose machine tools limited to the manufacture of gears. Note 2: I.2A.004 does not prohibit special purpose machine tools limited to the manufacture of any of the following parts: a. Crankshafts or camshafts; b. Tools or cutters; c. Extruder worms; Note 3: A machine tool

	three turning, milling or
	grinding capabilities (e.g.,
	a turning machine with
	milling capability), must
	be evaluated against each
	applicable entry I.2A.004.a
	and I.2A.016.
	Machine tools
	for turning, for
	machines capable
	of machining
	diameters greater
	than 35 mm, having
	all of the following
	characteristics:
	1. Positioning
	accuracy
	with 'all
	compensations
	available'
	equal to
	or less
	(better)
	than 6 µm
	according
	to ISO
	230/2
	(1988) ^a or
	national
	equivalents
	along any
	linear
	axis; and
	2. Two or
	more axes
	which
	can be
	coordinated
	simultaneously
	for
	'contouring
	control';
	Note 1: I.2A.004.a.
	does not prohibit
	turning machines
	specially designed
	for the production
	of contact lenses,
	having all of
	the following
	characteristics:
ordance with ISO 230/2 (1997) should consult the competent

> 1. Machine controller limited to using ophthalmic based software for part programming data input; and 2. No vacuum chucking. Note 2: I.2A.004.a does not prohibit bar machines (Swissturn), limited to machining only bar feed thru, if maximum bar diameter is equal to or less than 42 mm and there is no capability of mounting chucks. Machines may have drilling and/or milling capabilities for machining parts with diameters less than 42 mm. Electrical discharge machines (EDM) of the non-wire type which have two or more rotary axes which can be coordinated simultaneously for 'contouring control'; Dimensional inspection or measuring systems, equipment and 'electronic assemblies', as follows: Linear and angular displacement

> > measuring

a Manufacturers calculating positioning accuracy in accordance with ISO 230/2 (1997) should consult the competent authorities of the Member State in which they are established.

ex 2B006.b*

I.2A.005

	instrument	ts, as	
	follows:		
	Ι	Linear	
	Ċ	lisplacen	nent
		neasurin	
	i	nstrumer	nts
	ł	naving	
		any of the	2
		ollowing	
		Fechnical	
		Notes:	
		For the	
		ourpose d	of
		.2Å.005.	
		linear	
		lisplacen	nent'
		neans the	
		change o	
		listance	·
		between	
		he	
		neasurin	q
		probe	8
		and the	
		neasurea	1
		object.	
			Non-
			contact
			type
			measuring
			systems
			with
			a
			'resolution'
			equal
			to
			or
			less
			(better)
			than
			0,2
			0,2 μm
			within
			a
			measuring
			range
			up
			to
			0,2
			mm;
in accordance with ISO 230/2 (1997) should c	consult the con		

b.	Linear voltag	je
	differe transfe systen	ormer
	having all of	
	the follow	ving
	charac	cteristics:
	1.	'Linearity' equal
		to
		or less
		(better)
		than
		0,1 %
		within
		a
		measuring
		range up
		to
		5
		mm; and
	2.	Drift
		equal
		to
		or less
		(better)
		than
		0,1
		% per
		day
		at
		a standard
		standard ambient
		test
		room
		temperature
		$\frac{\pm}{1}$
		K;
		or

	C.	Measuri	nσ
	С.	systems	ing
		having	
		all	
		of	
		the	
		followin	g:
		1.	Containing
			a
			'laser';
			and
		2.	Maintaining,
			for
			at least
			12
			hours,
			over
			a
			temperature
			range
			of
			±
			1 V
			K
			around a
			a standard
			temperature
			and
			at
			а
			standard
			pressure,
			all
			of
			the
			following: a. A
			a. res
			ove
			the
			full
			sca
			of
			0,1
			μm
			or
			less
			(be
accuracy in accordance with ISO 230/2 (1997) sho	uld concult the correct of		and
accuracy in accordance with 180 230/2 (1997) sho	our consult the competent		

b. A 'm
une
equ
to
or
les
(be
tha
(0,
+
L/2
000
μm (I
(L is
the
me
len
in
mn
Note:
I.2A.005.b.1
does
not
prohibit magauning
measuring interferomet
systems,
without
closed
Or
open
loop
feedback,
containing
a
laser
to measure
slide
movement
errors
of
machine
tools,
dimensional
inspection
machines,
Or

		Angular displacement measuring instruments having an 'angular position deviation' equal to or less (better) than 0,00025 °; Note: I.2A.005.b.2. does not prohibit optical instruments, such as autocollimators, using collimated light (e.g. laser light) to detect	similar equipment.
		angular displacement	
		of a mirror	
I.2A.006	2B007.c	'Robots' having the following characteristics and specially designed controllers and 'end-effectors' therefor: N.B.: See also I.2A.019. c. Specially designed or rated as radiation-hardened to withstand a total radiation dose greater than 5×10^3 Gy (silicon) without operational degradation. Technical Notes: <i>The term</i> <i>Gy(silicon) refers</i>	

		to the energy in Joules per kilogram absorbed by an unshielded silicon sample when exposed to ionising radiation.
I.2A.007	2B104	 'Isostatic presses' having all of the following: N.B.: See also I.2A.017. a. Maximum working pressure of 69 MPa or greater; b. Designed to achieve and maintain a controlled thermal environment of 873 K (600 °C) or greater; and c. Possessing a chamber cavity with an inside diameter of 254 mm or greater.
I.2A.008	2B105	Chemical vapour deposition (CVD) furnaces designed or modified for the densification of carbon-carbon composites.
I.2A.009	2B109	Flow-forming machines and specially designed components as follows: N.B.: See also I.2A.020. a.a.Flow-forming machines having all of the following: 1.1.According to the manufacturer's technical specification, can be equipped with 'numerical control' units or a computer control, even

		c f m in Note: I.2A prohibit m not usable of propulsu and equipu cases) for Technical function of and flow-fa purpose of	more than two axes which can be coordinated simultaneously for 'contouring control'. Specially designed components for low-forming machines specified n I.2A.009.a. .009 does not achines that are in the production ion components ment (e.g. motor 'missiles'.
I.2A.010	2B116	equipment therefor, as a. V s f lo a a c c a a t t 1 2 2 a f	test systems, and components s follows: Vibration test systems employing eedback or closed oop techniques and incorporating digital controller, eapable of vibrating system at an acceleration equal o or greater than 0 g rms between 20 Hz and 2 kHz and imparting forces equal to or greater than 50 kN,

measured 'bare table'; Digital controllers, b. combined with specially designed vibration test software, with a 'real-time bandwidth' greater than 5 kHz designed for use with vibration test systems specified in I.2A.010.a.; c. Vibration thrusters (shaker units), with or without associated amplifiers, capable of imparting a force equal to or greater than 50 kN, measured 'bare table', and usable in vibration test systems specified in I.2A.010.a.; d. Test piece support structures and electronic units designed to combine multiple shaker units in a system capable of providing an effective combined force equal to or greater than 50 kN, measured 'bare table', and usable in vibration systems specified in I.2A.010.a. Technical Notes: In I.2A.010, 'bare table' means a flat table, or surface, with no fixture or fittings I.2A.011 2B117 Equipment and process controls, other than those specified in I.2A.007 or Manufacturers calculating positioning accuracy in accordance with ISO 230/2 (1997) should consult the competent authorities of the Member State in which they are established.

a

	Status: Point in time view a anges to legislation: There are currently no cil Regulation (EC) No 423/2007 (repealed	o known outstanding effects for the
	I.2A.008, designed or modified for densification and pyrolysis of structural composite rocket nozzles and	
		reentry vehicle nose tips.
I.2A.012	2B119	Balancing machines and related equipment, as follows:N.B.: See also I.2A.021.a.Balancing machines having all the following characteristics:1.Not capable o balancing rotors/ assemblie having a mass greater than 3 kg;2.Capable o balancing rotors/
a Manufacturers calcul	ating positioning accuracy in accordance w	mass; Note: I.2A.012.a. does not prohibit balancing machines designed or vith ISO 230/2 (1997) should consult the competent

a wantulating positioning accuracy in accordance with 150 250/2 (1997) shou authorities of the Member State in which they are established.

		modified for dental or other medical equipment.b.Indicator heads designed or modified for use with machines specified in I.2A.012.a. Technical Notes: Indicator heads are sometimes known as balancing instrumentation
I.2A.013	2B120	Motion simulators or rate tables having all of the following characteristics:a.Two axes or more;b.Slip rings capable of transmitting electrical power and/or signal information; andc.Having any of the following characteristics:1.For any single axis having all of the following:a.Capable of rates of all of the following:a.Capable of rates of sofall of the following: a.a.Capable of rates of sofs of rates of ss or less; andor less; and
		b. A rate resolution

			equal
			to
			or
			less
			than
			6
			degrees/
			S
			and
			an
			accuracy
			equal to
			or
			less
			than
			0,6
			degrees/
			s;
			aving
			worst-
			ise rate
			ability
			ual to better
			ess) than
			us or
			inus
			05 %
			veraged
		01	ver 10
			egrees or
			ore; or
		3. A	
		_	ositioning
			curacy
			ual to better
			an 5 arc
			cond.
		Note: I.2A.013 does	
		prohibit rotary tables	7
		designed or modified	
		machine tools or for	medical
		equipment.	
	2B121	Positioning tables (ed	quipment
		capable of precise rot	
		positioning in any ax	es),
		other than those spec	ified
calculating positionir	ng accuracy in accordance with ISO 230/2 (1997) should consult the comp	betent

a Manufacturers calculating positioning accuracy in accordance with ISO 230/2 (1997) should consult the competent authorities of the Member State in which they are established.

I.2A.014

		 in I.2A.013, having all the following characteristics: a. Two axes or more; and b. A positioning accuracy equal to or better than 5 arc second. Note: I.2A.014 does not prohibit rotary tables designed or modified for machine tools or for medical equipment.
I.2A.015	2B122	Centrifuges capable of imparting accelerations above 100 g and having slip rings capable of transmitting electrical power and signal information.
I.2A.016	2B201, 2B001.b.2 and 2B001.c.2	Machine tools and any combination thereof, as follows, for removing or cutting metals, ceramics or 'composites', which, according to the manufacturer's technical specification, can be equipped with electronic devices for simultaneous 'contouring control' in two or more axes: <i>Note: For 'numerical control' units prohibited because of their associated</i> <i>'software' see I.2B.002.</i> a. Machine tools for milling, having any of the following characteristics: 1. Positioning accuracies with 'all compensations available' equal to or less (better) than 6 µm according to ISO

	I		230/2
			(1988) ^a or
			national
			equivalents
			along any
			linear
			axis;
		2	· · · · · · · · · · · · · · · · · · ·
		2.	Two or
			more
			contouring
			rotary
			axes; or
		3.	Five or
			more axes
			which
			can be
			coordinated
			simultaneously
			for
			'contouring
			control'.
		Note: I.2	
		does not	
		milling n	
		having th	
		following	
		characte	ristics:
		a.	X-axis
			travel
			greater
			than 2 m;
		1	and
		b.	Overall
			positioning
			accuracy
			on the x-
			axis more
			(worse)
			than 30
	h	Mashin	μm .
	b.	Machine	
		grinding,	
			e following
		character	istics:
		1.	Positioning
			accuracies
			with 'all
			compensations
			available'
			equal to
			or less
ordance with ISO 230/2 (1997) should	consult the co	mnetent

	(better)
	than 4 µm
	according
	to ISO
	230/2
	(1988) ^a or
	national
	equivalents
	along any
	linear
	axis;
2.	Two or
	more
	contouring
	rotary
	axes; or
3.	Five or
	more axes
	which
	can be
	coordinated
	simultaneously
	for
	'contouring
	control'.
Note: I.2	A.016.b.
does not	prohibit
the follow	
grinding	machines:
a.	Cylindrical
	external,
	internal,
	and
	external-
	internal
	grinding
	machines
	having
	all of the
	following
	characteristics:
	1. Limited
	to
	<i>a</i>
	maximum
	workpiece
	capacity
	of 150
	mm outside
	ouisiae

			diameter
			or
			length;
			and
		2.	Axes
			limited
			to
			х,
			Z
			and
			с;
	b.	Jig	
		grinders	
		that do	
		not have	
		a z-axis	
		or a w-	
		axis with	!
		an overa	11
		positioni	ng
		accuracy	0
		less	
		(better)	
		than 4 µ	п
		accordin	g
		to ISO	
		230/2	
		(1988) ^a c	or
		national	
		equivale	nts.
	Note 1: I.2A.016 d	does not	
	prohibit special p		
	machine tools lim		
	manufacture of an	<i>iy of the</i>	
	following parts:		
	a. <i>Gears;</i>		
	b. Cranksh		
	camshaf		
	c. Tools or		
	d. Extruder		
	Note 2: A machine		
	having at least tw		
	three turning, mil		
	grinding capabilit		
	a turning machine		
	milling capability		
	be evaluated agai		
	applicable entry I		
	or I.2A.016.a. or l	<i>D</i>	
· 1 · · · 1 180 230/2 (/	1007) -h1d14 4h		

	the inside diameter of the insulated furnace chamber, depending on which of the two chambers is located
	of either the inside diameter of the pressure chamber or
	not include fixtures. That dimension will be the smaller
	and the working pressure are achieved and does
	the chamber in which both the working temperature
	In I.2A.017 the inside chamber dimension is that of
	presses' specified i I.2A.017.a. Technical Notes:
	b. Dies, moulds and controls, specially designed for 'isostatic
	of 152 mm;
	inside diameter in excess
	cavity with an
	2. A chamber
	working pressure of 69 MP or greater and
	achieving a maximum
	a. 'Isostatic presses' having both of the following characteristics: 1. Capable of
	those specified in I.2A.007, and related equipment, as follows:

authorities of the Member State in which they are established.

	systems	other than	n those
		in I.2A.0	
		111 1.2A.U	05, as
	follows:	G	
1	a.	Compute	
		controlle	
		numerica	
		controlle	d
		dimensio	nal
		inspection	n machines
		having bo	
		the follow	
		character	
		1.	Two or
			more axes;
			and
		2.	A one-
		4.	dimensional
			length
			'measurement
			uncertainty'
			equal to
			or less
			(better)
			than (1,25
			+ L/1
			000) µm
			tested with
			a probe
			of an
			'accuracy'
			of less
			(better)
			than 0,2
			μm (L
			is the
			measured
			length in
			millimetres)
			(Ref.:
			VDI/VDE
			2617 Parts
		a .	1 and 2);
1	b.	Systems	
			eous linear-
		angular i	
		of hemisl	
		having be	
		the follow	ving
		character	
		1.	'Measurement
			uncertainty'
unce with ISO 230/2 (19	07) should (concult the co	mnetent

		 along any linear axis equal to or less (better) than 3,5 µm per 5 mm; and 'Angular position deviation' equal to or less than 0,02 °. Note 1: Machine tools that can be used as measuring machines are prohibited if they meet or exceed the criteria specified for the machine tool function or the measuring machine function. Note 2: A machine specified in 1.2A.018 is prohibited if it exceeds the prohibition threshold anywhere within its operating range. Technical Notes: I. The probe used in determining the measurement uncertainty of a dimensional inspection system shall be described in VDI/VDE 2617 parts 2, 3 and 4. All parameters of measurement values in 1.2A.018 represent plus/ minus i.e., not total band.
I.2A.019	2B207	 'Robots', 'end-effectors' and control units, other than those specified in I.2A.006, as follows: a. 'Robots' or 'end- effectors' specially designed to comply

<i>Status:</i> Point in time view as at 24/06/2008.
Changes to legislation: There are currently no known outstanding effects for the
Council Regulation (EC) No 423/2007 (repealed). (See end of Document for details)

		b.	standard to hand explosive example electricar ratings explosive Control speciall for any 'robots'	e, meeting al code for high- ves); units y designed of the or 'end- s' specified
I.2A.020	2B209	forming of flow to other that	machine forming f an those s 9, and ma	both of owing eristics: Three or more rollers (active or guiding); and Which, according to the manufacturer's technical specification, can be equipped with 'numerical control' units or a computer
		b.	to form rotors o	ls designed cylindrical

	Status: Point in time view a anges to legislation: There are currently n cil Regulation (EC) No 423/2007 (repealed	o known outstanding effects for the
		75 mm and 400 mm. Note: I.2A.020.a. includes machines which have only a single roller designed to deform metal plus two auxiliary rollers which support the mandrel, but do not participate directly in the deformation process.
I.2A.021	2B219	Centrifugal multiplane balancing machines, fixed or portable, horizontal or vertical, as follows: a.a.Centrifugal balancing machines designed for balancing flexible rotors having a length of 600 mm or more and having all of the following characteristics: 1.1.Swing or journal diameter greater than 75 mm;2.Mass capability of from 0,9 to 23 kg; and3.Capable of balancing speed of revolutior greater than 5000 r.p.m.;
		b. Centrifugal balancing machines designed for balancing hollow cylindrical rotor components and having all of the following characteristics: with ISO 230/2 (1997) should consult the competent

<i>Status:</i> Point in time view as at 24/06/2008.	
Changes to legislation: There are currently no known outstanding effects for the	
Council Regulation (EC) No 423/2007 (repealed). (See end of Document for details)	

		1. 2.	Journal diameter greater than 75 mm; Mass capability
		3.	of from 0,9 to 23 kg; Capable of balancing to a
		4.	residual imbalance equal to or less than 0,01 kg × mm/kg per plane; and Belt drive type.
I.2A.022	2B225	b. A capab bridging the top of cell wal	tors that can e remote emical ions or hot er of the eristics: iility of ing 0,6 m of hot cell rough-the- eration); or iility of g over of a hot
		wall ope Technical Notes: <i>Remote manipula</i> <i>provide translatio</i> <i>human operator a</i> <i>a remote operatin</i> <i>terminal fixture.</i> The <i>be of 'master/slaw</i> <i>or operated by joy</i> <i>keypad.</i>	eration). tors on of actions to g arm and They may ve' type

I.2A.023	2B226	Controlled atmosphere (vacuum or inert gas) induction furnaces, and power supplies therefor, as follows:
		a. Furnaces having all of the following characteristics: 1. Capable of operation above 1 123 K (850 °C); 2. Induction
		coils 600 mm or less in diameter; and 3. Designed for power inputs of 5 kW or
		b. Power supplies, with a specified power output of 5 kW or more, specially designed for furnaces specified in I.2A.023.a. Note: I.2A.023.a. does not prohibit furnaces designed for the processing of semiconductor wafers.
I.2A.024	2B227	Vacuum or other controlled atmosphere metallurgical melting and casting furnaces and related equipment as follows: a. Arc remelt and casting furnaces
		having both of the following characteristics: 1. Consumable electrode capacities between

		b.	1 000 cm³ and 20 000 cm³, and2.Capable of operating with melting temperatures above 1 973 K (1 700 °C);Electron beam melting furnaces and plasma atomization and melting furnaces, having both of the following characteristics:1.A power of 50 kW or greater; and2.Capable of operating with melting temperatures above 1 473 K (1 200 °C);2.Computer control and monitoring systems specially configured for any of the furnaces specified in 1.2A.024.a. or b.
I.2A.025	2B228	assembly straighte bellows-	orication or y equipment, rotor ning equipment, forming mandrels as follows: Rotor assembly equipment for assembly of gas centrifuge rotor tube sections,
a Manufacturers calculating positionin	g accuracy in accordance with ISO 230/2 (1997) should	

		baffles, a	nd end
		caps;	
		Note: I.2	A.025.a.
		includes	precision
		mandrels	, clamps,
		and shrin	
		machines	v
	b.	Rotor stra	aightening
		equipmen	nt for
		alignmen	
		centrifug	
		tube sect	ions to a
		common	axis;
		Technica	l Notes:
		In I.2A.0.	25.b.
		such equi	ipment
			consists of
		precision	measuring
		probes li	nked
		to a comp	outer
		that subs	equently
			the action
		of, for ex	ample,
		pneumati	
		used for a	
		the rotor	tube
		sections.	
	C.	Bellows-	
			and dies
		for produ	
			nvolution
		bellows.	
		Technica	
		In I.2A.0.	
		bellows h	
		of the fol	
		character	
		1.	Inside
			diameter
			between 75 mm
			75 mm and 400
		2.	mm; Lanath
		∠.	Length equal to
			or greater
			than 12,7
			man 12,7 mm;
		3.	mm, Single
		J.	convolution
			depth
· · · · · · · · · · · · · · · · · · ·	1007) -1 11	14 41-	acpin

<i>Status: Point in time view as at 24/06/2008.</i>	
Changes to legislation: There are currently no known outstanding effects for the	
Council Regulation (EC) No 423/2007 (repealed). (See end of Document for details)	

		greater than 2 mm; and 4. Made of high- strength aluminium alloys, maraging steel or high strength 'fibrous or filamentary materials'.
I.2A.026	2B230	 'Pressure transducers' capable of measuring absolute pressures at any point in the range 0 to 13 kPa and having both of the following characteristics: a. Pressure sensing elements made of or protected by aluminium, aluminium alloy, nickel or nickel alloy with more than 60 % nickel by weight; and b. Having either of the following characteristics: 1. A full scale of less than 13 kPa and an 'accuracy' of better than + 1 % of full scale; or 2. A full scale of 13 kPa or greater and an 'accuracy' of better

	Status: Point in time view as inges to legislation: There are currently no cil Regulation (EC) No 423/2007 (repealed	hown outstanding effects for the
		than + 130 Pa. Technical Notes: For the purposes of I.2A.026, 'accuracy' includes non- linearity, hysteresis and repeatability at ambient temperature.
I.2A.027	2B231	 Vacuum pumps having all of the following characteristics: a. Input throat size equal to or greater than 380 mm; b. Pumping speed equal to or greater than 15 m³/s; and c. Capable of producing an ultimate vacuum better than 13 mPa. Technical Notes: 1. The pumping speed is determined at the measurement point with nitrogen gas or air. 2. The ultimate vacuum is determined at the input of the pump with the input of the pump blocked off
I.2A.028	2B232	Multistage light gas guns or other high- velocity gun systems (coil, electromagnetic, and electrothermal types, and other advanced systems) capable of accelerating projectiles to 2 km/s or greater

I.2B

TECHNOLOGY, INCLUDING SOFTWARE

No	Relevant item(s) from Annex to Regulation (EC) No 1183/2007	Description
I.2B.001	ex 2D001	'Software', other than that specified in I.2B.002, specially designed or modified for the 'development', 'production' or 'use' of equipment specified in I.2A.004 to I.2A.006.
I.2B.002	2D002	'Software' for electronic devices, even when residing in an electronic device or system, enabling such devices or systems to function as a 'numerical control' unit, capable of co- ordinating simultaneously more than four axes for 'contouring control'. Note 1: I.2B.002 does not prohibit 'software' specially designed or modified for the operation of machine tools not specified in Category I.2.
I.2B.003	2D101	'Software' specially designed or modified for the 'use' of equipment specified in I.2A.007 to I.2A.015.
I.2B.004	2D201	'Software' specially designed for the 'use' of equipment specified in I.2A.017 to I.2A.024. Note: 'Software' specially designed for equipment specified in I.2A.018 includes 'software' for simultaneous measurements of wall thickness and contour
I.2B.005	2D202	'Software' specially designed or modified for the 'development', 'production' or 'use' of equipment specified in I.2A.016.

I.2B.006	<i>ex</i> 2E001	'Technology' according to the General Technology Note for the 'development' of equipment or 'software' specified in I.2A.002 to I.2A.004, I.2A.006.b., I.2A.006.c, I.2A.007 to I.2A.028, I.2B.001, I.2B.003 or I.2B.004.
I.2B.007	<i>ex</i> 2E002	'Technology' according to the General Technology Note for the 'production' of equipment specified in I.2A.002 to I.2A.004, I.2A.006.b., I.2A.006.c, I.2A.007 to I.2A.028.
I.2B.008	2E101	'Technology' according to the General Technology Note for the 'use' of equipment or 'software' specified in I.2A.007, I.2A.009, I.2A.010, I.2A.012 to I.2A.015 or I.2B.003.
I.2B.009	<i>ex</i> 2E201	'Technology' according to the General Technology Note for the 'use' of equipment or 'software' specified in I.2A.002 to I.2A.005, I.2A.006.b., I.2A.006.c., I.2A.016 to I.2A.020, I.2A.022 to I.2A.028, I.2B.004 or I.2B.005.

I.3 ELECTRONICS

I.3A

GOODS

No	Relevant item(s) from Annex to Regulation (EC) No 1183/2007	Description
I.3A.001	<i>ex</i> 3A001.a*	Electronic components, as follows: a. General purpose integrated circuits, as follows: <i>Note 1: The</i> <i>prohibition status</i> <i>of wafers (finished</i>

or unfinished), in which the function has been determined, is to be evaluated against the parameters of *I.3A*.001.a. *Note 2: Integrated* circuits include the following types: 'Monolithic integrated circuits'; 'Hybrid integrated circuits'; 'Multichip integrated circuits'; 'Film type integrated circuits', including silicon-onsapphire integrated circuits; 'Optical integrated circuits'. Integrated circuits having all of the following characteristics: Designed a. or rated as radiation hardened to withstand а total irradiation dose of 5 Х 10^{3} Gy

			(silicon) or higher; and Usable in protecting rocket systems and 'unmanned aerial vehicles' against nuclear effects (e.g., Electromagnetic Pulse (EMP), X- rays, combined blast and thermal effects), and
			usable for 'missiles'.
I.3A.002	3A101	Electronic equipment, devices and components, as follows: a. Analogue-to- digital converters, usable in 'missiles' designed to meet military specifications for ruggedized equipment; b. Accelerators capable of delivering electromagnetic radiation produced by bremsstrahlung from accelerated electrons of 2 MeV or greater, and	2 ,

	<i>Status:</i> Point in time view as at 24/06/200 <i>slation:</i> There are currently no known outstan (EC) No 423/2007 (repealed). (See end of	unding effects f			
			those acc Note: I.3 above do specify e	es not quipment designed cal	
I.3A.003	3A201	follows;	ic compor		
		a.	Capacito either of following character	g sets of	
			1.	a.	Voltage rating greater
				1	than 1,4 kV;
				b.	Energy storage greater than 10
				с.	J; Capacitance greater than 0,5
				d.	μF; and Series inductance less than 50
			2.	a.	nH; or Voltage rating greater than 750
				b.	V; Capacitance greater than 0,25 μ F; and

		c.	Series
			inductance
			less
			than
			10
			nH;
b.	Supercor	nducting	,
	solenoida		
	electrom	agnets	
	having al		
	the follow		
	character	istics:	
	1.	Capable	
		of creatin	ıg
		magnetic	
		fields	
		greater	
		than 2 T;	
	2.	A ratio	
		of length	
		to inner	
		diameter	
		greater	
		than 2;	
	3.	Inner	
		diameter	
		greater	
		than 300	
	4.	mm; and Magnetic	
	т.	field	,
		uniform t	to
		better tha	
		1 % over	
		the centra	
		50 % of	
		the inner	
		volume;	
	Note: I.3		
	does not		
	magnets		
	designed		
		'as parts	
	v	cal nuclea	
	(NMR) in	resonanc naging	e
		The phras	SP
	'as part of		
	not neces		
	mean phy	•	
	part in th		
		; separate	8
	shipment		

с.	allowed, the related document specify the shipment dispatched of' the in systems. Flash X- generato pulsed el	ts are ed 'as par naging ray rs or lectron tors having the g sets of	ť
	1.	a.	An accelerator peak electron energy of 500 keV or greater but less than 25 MeV; and
		b.	and With a 'figure of merit' (K) of 0,25 or greater; or
	2.	a.	An accelerator peak electron energy of 25 MeV or

greater; and b. A 'peak power' greater than 50 MW. <i>Note:</i>
I.3A.003.c. does not prohibit accelerators that are component parts of devices designed for purposes other than electron beam or X-ray radiation (electron microscopy, for example) nor those designed for medical purposes: Technical Notes;
1. The 'figure of merit' K is defined as: $K = 1,7 \times 10^3 V^{2,.65} Q$ V is the peak electron energy in million electron volts. If the accelerator beam pulse duration is less than or equal to 1 µs, then Q is the total accelerated charge in Coulombs. If the accelerator beam pulse duration is greater than 1 µs, then Q is the maximum accelerated charge in 1 µs. Q equals the integral of i with respect to t, over

the time of the be $(Q = \int id)$ i is beam	am pulse t), where current res and t is
2.	'Peak power' = (peak potential in volts) × (peak beam current in amperes).
З.	In machines based on microwave accelerating cavities, the time duration of the beam pulse is the lesser of 1 µs or the duration of the bunched beam packet resulting from one microwave modulator pulse.
4.	In machines based on microwave accelerating cavities, the peak beam current is the average

		1
		current in the time duration of a bunched beam packet
I.3A.004	3A225	 Frequency changers or generators, other than those specified in I.0A.002.b.13., having all of the following characteristics: a. Multiphase output capable of providing a power of 40 W or greater; b. Capable of operating in the frequency range between 600 and 2 000 Hz; c. Total harmonic distortion better (less) than 10 %; and d. Frequency control better (less) than 0,1 %. Technical Notes: Frequency changers in I.3A.004 are also known as converters or inverters.
I.3A.005	3A226	High-power direct current power supplies, other than those specified in I.0A.002.j.6., having both of the following characteristics: a.a.Capable of continuously producing, over a time period of 8 hours, 100 V or greater with current output of 500 A or greater; and b.b.Current or voltage stability better than 0,1 % over a time period of 8 hours
I.3A.006	3A227	High-voltage direct current power supplies, other

<i>Status:</i> Point in time view as at 24/06/2008.
Changes to legislation: There are currently no known outstanding effects for the
Council Regulation (EC) No 423/2007 (repealed). (See end of Document for details)

		I.0A.002	wing cha Capable continue produci a time p 8 hours, greater output c greater; Current stability 0,1 % o	ring both of racteristics: e of ously ng, over period of , 20 kV or with current of 1 A or
I.3A.007	3A228	Switchir follows: a. b.	Cold-ca whether or not, o similarly gap, hav of the fo character 1. 2. 3. 4. <i>Note: I</i> <i>includes</i> <i>tubes ar</i> <i>sprytror</i> Triggero gaps hav	thode tubes, gas filled operating y to a spark ving all ollowing eristics: Containing three or more electrodes; Anode peak voltage rating of 2,5 kV or more; Anode peak current rating of 100 A or more; and Anode delay time of 10 µs or less; <i>3A.007</i> <i>s gas krytron</i> <i>ad vacuum</i>

			1. 2.	An anode delay time of 15 µs or less; and Rated for a peak current of 500 A or
		с.	Modules assembli a fast sw function of the fo characte 1.	more; s or ies with vitching having all llowing ristics: Anode peak voltage
			2. 3.	rating greater than 2 kV; Anode peak current rating of 500 A or more; and Turn on
I.3A.008	3A229	Firing se	ts and eq	time of 1 μs or less.
		high-cur as follow	rent pulse /s: e also Mi ontrols. Explosiv firing se to drive controlled detonato in I.3A.(Modular pulse ge (pulsers)	e generators litary ve detonator ts designed multiple ed ors specified 011; electrical nerators) having e following

	2.	Enclosed
		in a dust-
		tight
		enclosure;
	3.	Capable of
		delivering
		their
		energy in
		less than
		15 μs;
	4.	Having
		an output
		greater
		than 100
	5	A;
	5.	Having
		a 'rise time' of
		less than
		$10 \ \mu s into$
		loads of
		less than
		40 ohms;
	6.	No
		dimension
		greater
		than 254
	_	mm;
	7.	Weight
		less than
	8.	25 kg; and
	0.	Specified for use
		over an
		extended
		temperature
		range 223
		K (- 50
		°C) to 373
		K (100
		°C) or
		specified
		as suitable
		for
		aerospace
	Note: I.3.	applications.
	lamp driv	xenon flash vers
	Technica	
	In I.3A.0	
	'rise time	
	defined a	s the time
'	-	

		interval from 10 % to 90 % current amplitude when driving a resistive load
I.3A.009	3A230	High-speed pulse generators having both of the following characteristics: a. Output voltage greater than 6 V into a resistive load of less than 55 ohms, and b. 'Pulse transition time' less than 500 ps. Technical Note: In I.3A.009, 'pulse transition time' is defined as the time interval between 10 % and 90 % voltage amplitude
I.3A.010	3A231	Neutron generator systems, including tubes, having both of the following characteristics: a. Designed for operation without an external vacuum system; and b. Utilizing electrostatic acceleration to induce a tritium- deuterium nuclear reaction
I.3A.011	3A232	Detonators and multipoint initiation systems, as follows: N.B.: See also Military Goods Controls. a. Electrically driven explosive detonators, as follows: 1. Exploding bridge (EB); 2. Exploding bridge wire (EBW); 3. Slapper;

	4.	Exploding foil initiators
b.		gle or detonators
	simultan initiate a surface o	n explosive over greater
	than 5 00 from a si signal wi initiation	ngle firing ith an
Note: I.3	spread or surface of 2,5 μs. <i>A.011 doe</i>	of less than
*	zide.	s using osives, such
of concer electrica		ise a small or (bridge,
a fast, hi pulse is p		
exploding a chemic contactin	g conduct al detona ng high-ex such as F	or starts tion in a plosive
(Pentaer In slappe explosive	ythritoltei er detonat	tranitrate). fors, the sation of the
a flyer or gap and slapper o	r slapper of the impac	across a et of the losive starts
slapper i driven by The term	n some de a magne explodin	esigns is etic force. g foil
an EB or detonato initiator	a slappe r. Also, th is sometir	e word nes used in
place of	ine word	detonator

I.3A.012	3A233	Mass spectrometers, other
		than those specified in
		I.0A.002.g., capable of
		measuring ions of 230
		atomic mass units or greater
		and having a resolution of
		better than 2 parts in 230,
		as follows, and ion sources
		therefor:
		a. Inductively coupled
		plasma mass
		spectrometers (ICP/ MS);
		b. Glow discharge
		mass spectrometers
		(GDMS);
		c. Thermal ionization
		mass spectrometers
		(TIMS);
		d. Electron
		bombardment
		mass spectrometers
		which have a
		source chamber
		constructed from,
		lined with or plated
		with materials
		resistant to UF_6 ;
		e. Molecular beam
		mass spectrometers
		having either of
		the following
		characteristics:
		1. A source
		chamber
		constructed
		from,
		lined with
		or plated
		with
		stainless
		steel or
		molybdenum
		and
		equipped
		with a
		cold trap
		capable of
		cooling to
		193 K (–
		80 °C) or
		less; or
		less; or

<i>Status:</i> Point in time view as at 24/06/2008.		
Changes to legislation: There are currently no known outstanding effects for the		
Council Regulation (EC) No 423/2007 (repealed). (See end of Document for details)		

	2.	A source chamber constructed from, lined with or plated with materials resistant to UF ₆ ;
f.	equipped microflue ion source for actini	orination e designed

I.3B

No	Relevant item(s) from Annex to Regulation (EC) No 1183/2007	Description
I.3B.001	3D101	'Software' specially designed or modified for the 'use' of equipment specified in I.3A.002.b
I.3B.002	<i>ex</i> 3E001	'Technology' according to the General Technology Note for the 'development' or 'production' of equipment or materials specified in I.3A.001 to I.3A.003, or in I.3A.007 to I.3A.012.
I.3B.003	ex 3E101	'Technology' according to the General Technology Note for the 'use' of equipment or 'software' specified in I.3A.001, I.3A.002 or I.3B.001.
I.3B.004	3E102	'Technology' according to the General Technology Note for the 'development' of 'software' specified in I.3B.001.
I.3B.005	<i>ex</i> 3E201	'Technology' according to the General Technology Note for the 'use' of equipment

TECHNOLOGY, INCLUDING SOFTWARE

I.4 COMPUTERS

I.4A

GOODS

No	Relevant item(s) from Annex to Regulation (EC) No 1183/2007	Description
I.4A.001	4A001.a.1 *	Electronic computers and related equipment, as follows: N.B.: See also I.4A.002. a. Specially designed to have the following characteristics: Rated for continuous operation at temperatures below 228 K (- 45 °C) or above 328 K (55 °C); Note: I.4A.001 does not apply to computers specially designed for civil automobile or railway train applications.
I.4A.002	4A101*	Analogue computers, 'digital computers' or digital differential analysers having all of the following characteristics: N.B.: See also Military Goods Controls for computers for use in rockets or missiles.

<i>Status:</i> Point in time view as at 24/06/2008.			
Changes to legislation: There are currently no known outstanding effects for the			
Council Regulation (EC) No 423/2007 (repealed). (See end of Document for details)			

		a. b.	Designed or modified for use in space launch vehicles specified in I.9A.001 or sounding rockets specified in I.9A.005; and Designed as ruggedised or radiation hardened to withstand radiation levels of 5×10^3 Gy (silicon) or higher.
I.4A.003	4A102	designed simulati- integrati vehicles or sound in I.9A.0 N.B.: Se Goods C missiles <i>Note: TI</i> <i>applies</i> <i>is suppli</i>	the also Military Controls for rockets or related computers. <i>his prohibition only</i> <i>when the equipment</i> <i>ied with 'software'</i> <i>d in I.7B.003 or</i>

I.4B

TECHNOLOGY, INCLUDING SOFTWARE

No	Relevant item(s) from Annex to Regulation (EC) No 1183/2007	Description
I.4B.001	<i>ex</i> 4E001.a	'Technology' according to the General Technology Note, for the 'development', 'production' or 'use' of equipment or 'software' specified in I.4A.001, I.4A.002 or I.4A.003.

I.5 TELECOMMUNICATIONS AND 'INFORMATION SECURITY'

I.5A

GOODS

No	Relevant item(s) from Annex to Regulation (EC) No 1183/2007	Description
I.5A.001	5A101	Telemetering and telecontrol equipment, including ground equipment, designed or modified for 'missiles'.Technical Notes:In I.5A.001 'missile' means complete rocket systems and unmanned aerial vehicle systems capable of a range
		c. Equipment designed for commercial, civil or 'Safety of Life' (e.g. data integrity, flight safety) GNSS services;

I.5B

TECHNOLOGY, INCLUDING SOFTWARE

No	Relevant item(s) from Annex to Regulation (EC) No 1183/2007	Description
I.5B.001	5D101	'Software' specially designed or modified for the 'use' of equipment specified in I.5A.001.
I.5B.002	5E101	'Technology' according to the General Technology Note for the 'development',

	'production' or 'use' of equipment specified in I.5A.001 or software specified in I.5B.001.
--	--

I.6 SENSORS AND LASERS

I.6A	
------	--

GOODS

No	Relevant item(s) from Annex to Regulation (EC) No 1183/2007	Description
I.6A.001	ex 6A005.b*, ex 6A005.c* and ex 6A005.d* a.: ex 6A005.d.4 b.: ex 6A005.b.2-4 c.: ex 6A005.c.2	['] Lasers', other than those specified in I.0A.002.g.5. or I.0A.002.h.6., components and optical equipment, as follows: ^a a. Pulsed excimer (XeF, XeCl, KrF) 'lasers' having all of the following characteristics: 1. Operating at wavelengths between 240 nm and 360 nm; 2. A repetition rate greater
a The texts of points a. I	p and c in this entry do not correspond with those of poin	than 250 Hz; and 3. An average output power exceeding 500 W. b. Copper (Cu) vapour 'lasers' having both of the following characteristics: 1. Operating at wavelengths

		between 500 nm and 600 nm; and 2. An average output power exceeding 40 W. c. Solid state 'tunable' alexandrite (CR: BeAl ₂ O ₄) 'lasers' having all of the following characteristics: 1. Operating at wavelengths between 720 nm and 800 nm; 2. A bandwidth of 0,005 nm or less; 3. A repetition rate greater than 125 Hz; and 4. An average output power exceeding 30 W.
I.6A.002	6A007.c	Gravity gradiometers.
I.6A.003	6A102	Radiation hardened 'detectors' specially designed or modified for protecting against nuclear effects (e.g. electromagnetic pulse (EMP), X-rays, combined blast and thermal effects) and usable for 'missiles', designed or rated to withstand radiation

<i>Status:</i> Point in time view as at 24/06/2008.
Changes to legislation: There are currently no known outstanding effects for the
Council Regulation (EC) No 423/2007 (repealed). (See end of Document for details)

		levels which meet or exceed a total irradiation dose of 5×10^5 rads (silicon). Technical Notes: In I.6A.003, a 'detector' is defined as a mechanical, electrical, optical or chemical device that automatically identifies and records, or registers a stimulus such as an environmental change in pressure or temperature, an electrical or electromagnetic signal or radiation from a radioactive material. This includes devices that sense by one time operation or failure.
I.6A.004	6A107	Gravity meters (gravimeters) and components for gravity meters and gravity gradiometers, as follows: a.a.Gravity meters, as follows: a.a.Gravity meters, designed or modified for airborne or marine use, and having a static or operational accuracy of 7×10^{-6} m/s² (0,7 milligal) or less (better), and having a time- to-steady-state registration of two minutes or less; b.b.Specially designed components for gravity meters specified in I.6A.004.a. and gravity gradiometers specified in I.6A.002.
I.6A.005 a The texts of points a, b and c in this	6A108 entry do not correspond with those of poin	Radar systems and tracking systems as follows: a. Radar and laser radar systems designed or modified for use

		in space	launch
		vehicles	specified
		in I.9A.0	
		sounding	
		specified	
		I.9A.005	
		N.B.: See	
		Military	
		Controls	
		and laser	
		for rocke	ts or
		missiles.	
		Note: I.6.	
		includes	the
		following	;;;
		a.	Terrain
			contour
			mapping
			equipment;
		b.	Imaging
			sensor
			equipment;
		c.	Scene
		U .	mapping
			and
			correlation
			(both
			digital and
			analogue)
		1	<i>equipment;</i>
		d.	Doppler
			navigation
			radar
			equipment.
	b.	Precision	
		systems,	
		for 'miss	iles', as
		follows:	
		1.	Tracking
			systems
			which use
			a code
			translator
			in
			conjunction
			with either
			surface or
			airborne
			references
			or
			navigation
<u> </u>	1 1 2		navigation
se of points	s a. b and c of	DAUUS	

	2	satellite systems to provi real-tim measure of in-fli position and velocity	de e ements ght
	2.	Range instrume radars includim associat optical/ infrared trackers with all of the followir capabili a.	ng ties: Angular resolution better than 3
		b.	milliradians; Range of 30 km or greater with a range resolution better than 10 m rms;
		c.	Velocity resolution better than 3 m/ s.
	In I.6A.	al Notes: 005.b. ' <i>means</i>	
entry do not correspond with those of points	a, b and c of $6A005$.		

a The texts of points a, b and c in this en

I.6A.007 6A203 C	complete rocket systems and unmanned aerial vehicle systems capable of a range exceeding 300 km.
fc	of greater than 20 cm ² ; and
	ameras and components, as bllows: Mechanical rotating mirror cameras, as follows, and specially designed components therefor: 1. Framing cameras with recording rates greater than 225 000 frames per second; 2. Streak cameras with writing speeds greater than 0,5 mm per microsecond; <i>Note: In I.6A.007.a.</i> <i>components of such</i> <i>cameras include</i> <i>their synchronizing</i> <i>electronics</i> <i>units and rotor</i> <i>assemblies</i>

b. Electronic streak cameras, electronic framing cameras, tubes and devices, as follows: 1. Electronic streak cameras capable of 50 ns or less time resolution; 2. Streak tubes for cameras specified in I.6A.007.b.1.; 3. Electronic (or electronically shuttered) framing cameras capable of 50 ns or less frame exposure time; 4. Framing tubes and solid-state imaging devices for use with cameras specified in I.6A.007.b.3., as follows: a. Proximity focused image intensifier tubes having the photocathode deposited				
b. Electronic streak cameras, electronic framing cameras, tubes and devices, as follows: 1. Electronic streak cameras capable of 50 ns or less time resolution; 2. Streak tubes for cameras specified in L6A.007.b.1.; 3. Electronic (or electronically shuttered) framing cameras capable of 50 ns or less fram exposure time; 4. Framing tubes and solid-state imaging devices for use with cameras specified in 1.6A.007.b.3., as follows: a. Proximity focused image intensifier tubes having the photocathode		turbines,	mirrors	
cameras, electronic framing cameras, tubes and devices, as follows: 1. Electronic streak cameras capable of 50 ns or less time resolution; 2. Streak tubes for cameras specified in 1.6A.007.b.1.; 3. Electronic (or electronically shuttered) framing cameras capable of 50 ns or less frame exposure time; 4. Framing tubes and solid-state imaging devices for use with cameras specified in 1.6A.007.b.3., as follows: a. Proximity focused image intensifier tubes having the photocathode		and bear	ings.	
cameras, electronic framing cameras, tubes and devices, as follows: 1. Electronic streak cameras capable of 50 ns or less time resolution; 2. Streak tubes for cameras specified in 1.6A.007.b.1.; 3. Electronic (or electronically shuttered) framing cameras capable of 50 ns or less frame exposure time; 4. Framing tubes and solid-state imaging devices for use with cameras specified in 1.6A.007.b.3., as follows: a. Proximity focused image intensifier tubes having the photocathode	b.			
framing cameras, tubes and devices, as follows: 1. Electronic streak cameras capable of 50 ns or less time resolution; 2. Streak tubes for cameras specified in 1.6A.007.b.1.; 3. Electronic (or electronically shuttered) framing cameras capable of 50 ns or less frame exposure time; 4. Framing tubes and solid-state imaging devices for use with cameras specified in 1.6A.007.b.3., as follows: a. Proximity focused image intensifier tubes having the photocathode				c
tubes and devices, as follows: 1. Electronic streak cameras capable of 50 ns or less time resolution; 2. Streak tubes for cameras specified in 1.6A.007.b.1.; 3. Electronic (or electronically shuttered) framing cameras capable of 50 ns or less frame exposure time; 4. Framing tubes and solid-state imaging devices for use with cameras specified in 1.6A.007.b.3., as follows: a. Proximity focused image intensifier tubes having the photocathode				
as follows: 1. Electronic streak cameras capable of 50 ns or less time resolution; 2. Streak tubes for cameras specified in 1.6A.007.b.1.; 3. Electronic (or electronically shuttered) framing cameras capable of 50 ns or less frame exposure time; 4. Framing tubes and solid-state imaging devices for use with cameras specified in 1.6A.007.b.3., as follows: a. Proximity focused image intensifier tubes having the photocathode				
1. Electronic streak cameras capable of 50 ns or less time resolution; 2. Streak tubes for cameras specified in 1. I.6A.007.b.1.; 3. Electronic (or electronically shuttered) framing cameras capable of 50 ns or less frame exposure time; 4. Framing tubes and solid-state imaging devices for use with cameras specified in 5. Proximity focused image intensifier tubes having the photocathode				
streak cameras capable of 50 ns or less time resolution; 2. Streak tubes for cameras specified in 1.6A.007.b.1.; 3. Electronic (or electronically shuttered) framing cameras capable of 50 ns or less frame exposure time; 4. Framing tubes and solid-state imaging devices for use with cameras specified in 1.6A.007.b.3., as follows: a. Proximity focused image intensifier tubes having the photocathode				C
 cameras capable of S0 ns or less time resolution; 2. Streak tubes for cameras specified in 1.6A.007.b.1.; 3. Electronic (or electronically shuttered) framing cameras capable of 50 ns or less frame exposure time; 4. Framing tubes and solid-state imaging devices for use with cameras specified in I.6A.007.b.3., as follows: a. Proximity focused image intensifier tubes having the photocathode 		1.		C
 capable of 50 ns or less time resolution; 2. Streak tubes for cameras specified in 1.6A.007.b.1.; 3. Electronic (or electronically shuttered) framing cameras capable of 50 ns or less frame exposure time; 4. Framing tubes and solid-state imaging devices for use with cameras specified in 1.6A.007.b.3., as follows: a. Proximity focused image intensifier tubes having the photocathode 				
50 ns or less time resolution; 2. Streak tubes for cameras specified in I.6A.007.b.1.; 3. Electronic (or electronically shuttered) framing cameras capable of 50 ns or less frame exposure time; 4. Framing devices for use with cameras specified in I.6A.007.b.3., as follows: a. Proximity focused image intensifier tubes having the photocathode				,f
less time resolution; 2. Streak tubes for cameras specified in 1.6A.007.b.1.; 3. Electronic (or electronically shuttered) framing cameras capable of 50 ns or less frame exposure time; 4. Framing tubes and solid-state imaging devices for use with cameras specified in 1.6A.007.b.3., as follows: a. Proximity focused image intensifier tubes having the photocathode)1
 2. Streak tubes for cameras specified in 1.6A.007.b.1.; 3. Electronic (or electronically shuttered) framing cameras capable of 50 ns or less frame exposure time; 4. Framing tubes and solid-state imaging devices for use with cameras specified in 1.6A.007.b.3., as follows: a. Proximity focused image intensifier tubes having the photocathode 				
 2. Streak tubes for cameras specified in I.6A.007.b.1.; 3. Electronic (or electronically shuttered) framing cameras capable of 50 ns or less frame exposure time; 4. Framing tubes and solid-state imaging devices for use with cameras specified in I.6A.007.b.3., as follows: a. Proximity focused image intensifier tubes having the photocathode 				
tubes for cameras specified in I.6A.007.b.1.; 3. Electronic (or electronically shuttered) framing cameras capable of 50 ns or less frame exposure time; 4. Framing tubes and solid-state imaging devices for use with cameras specified in I.6A.007.b.3., as follows: a. Proximity focused image intensifier tubes having the photocathode		2		11,
cameras specified in I.6A.007.b.1.; 3. Electronic (or electronically shuttered) framing cameras capable of 50 ns or less frame exposure time; 4. Framing tubes and solid-state imaging devices for use with cameras specified in I.6A.007.b.3., as follows: a. Proximity focused image intensifier tubes having the photocathode		Ζ.		
specified in I.6A.007.b.1.; 3. Electronic (or electronically shuttered) framing cameras capable of 50 ns or less frame exposure time; 4. Framing tubes and solid-state imaging devices for use with cameras specified in I.6A.007.b.3., as follows: a. Proximity focused image intensifier tubes having the photocathode				
in I.6A.007.b.1.; 3. Electronic (or electronically shuttered) framing cameras capable of 50 ns or less frame exposure time; 4. Framing tubes and solid-state imaging devices for use with cameras specified in I.6A.007.b.3., as follows: a. Proximity focused image intensifier tubes having the photocathode				
3.I.6A.007.b.1.; Electronic (or electronically shuttered) framing cameras capable of 50 ns or less frame exposure time;4.Framing tubes and solid-state imaging devices for use with cameras specified in I.6A.007.b.3., as follows: a.a.Proximity focused image intensifier tubes having the photocathode				
 3. Electronic (or electronically shuttered) framing cameras capable of 50 ns or less frame exposure time; 4. Framing tubes and solid-state imaging devices for use with cameras specified in I.6A.007.b.3., as follows: a. Proximity focused image intensifier tubes having the photocathode 				1 1
(or electronically shuttered) framing cameras capable of 50 ns or less frame exposure time; 4. Framing tubes and solid-state imaging devices for use with cameras specified in I.6A.007.b.3., as follows: a. Proximity focused image intensifier tubes having the photocathode		•		
electronically shuttered) framing cameras capable of 50 ns or less frame exposure time; 4. Framing tubes and solid-state imaging devices for use with cameras specified in I.6A.007.b.3., as follows: a. Proximity focused image intensifier tubes having the photocathode		3.		c
shuttered) framing cameras capable of 50 ns or less frame exposure time; 4. Framing tubes and solid-state imaging devices for use with cameras specified in I.6A.007.b.3., as follows: a. Proximity focused image intensifier tubes having the photocathode				
framing cameras capable of 50 ns or less frame exposure time; 4. Framing tubes and solid-state imaging devices for use with cameras specified in I.6A.007.b.3., as follows: a. Proximity focused image intensifier tubes having the photocathode				
cameras capable of 50 ns or less frame exposure time; 4. Framing tubes and solid-state imaging devices for use with cameras specified in I.6A.007.b.3., as follows: a. Proximity focused image intensifier tubes having the photocathode				l)
capable of 50 ns or less frame exposure time; 4. Framing tubes and solid-state imaging devices for use with cameras specified in I.6A.007.b.3., as follows: a. Proximity focused image intensifier tubes having the photocathode			framing	
50 ns or less frame exposure time; 4. Framing tubes and solid-state imaging devices for use with cameras specified in I.6A.007.b.3., as follows: a. Proximity focused image intensifier tubes having the photocathode			cameras	
less frame exposure time; 4. Framing tubes and solid-state imaging devices for use with cameras specified in I.6A.007.b.3., as follows: a. Proximity focused image intensifier tubes having the photocathode			capable of	of
exposure time; 4. Framing tubes and solid-state imaging devices for use with cameras specified in I.6A.007.b.3., as follows: a. Proximity focused image intensifier tubes having the photocathode			50 ns or	
4. Framing tubes and solid-state imaging devices for use with cameras specified in I.6A.007.b.3., as follows: a. Proximity focused image intensifier tubes having the photocathode			less fram	e
4. Framing tubes and solid-state imaging devices for use with cameras specified in I.6A.007.b.3., as follows: a. Proximity focused image intensifier tubes having the photocathode			exposure	
tubes and solid-state imaging devices for use with cameras specified in I.6A.007.b.3., as follows: a. Proximity focused image intensifier tubes having the photocathode			time;	
solid-state imaging devices for use with cameras specified in I.6A.007.b.3., as follows: a. Proximity focused image intensifier tubes having the photocathode		4.	Framing	
imaging devices for use with cameras specified in I.6A.007.b.3., as follows: a. Proximity focused image intensifier tubes having the photocathode				1
devices for use with cameras specified in I.6A.007.b.3., as follows: a. Proximity focused image intensifier tubes having the photocathode			solid-stat	te
devices for use with cameras specified in I.6A.007.b.3., as follows: a. Proximity focused image intensifier tubes having the photocathode			imaging	
for use with cameras specified in I.6A.007.b.3., as follows: a. Proximity focused image intensifier tubes having the photocathode				
with cameras specified in I.6A.007.b.3., as follows: a. Proximity focused image intensifier tubes having the photocathode				
cameras specified in I.6A.007.b.3., as follows: a. Proximity focused image intensifier tubes having the photocathode				
specified in I.6A.007.b.3., as follows: a. Proximity focused image intensifier tubes having the photocathode			cameras	
in I.6A.007.b.3., as follows: a. Proximity focused image intensifier tubes having the photocathode				
I.6A.007.b.3., as follows: a. Proximity focused image intensifier tubes having the photocathode			. –	
as follows: a. Proximity focused image intensifier tubes having the photocathode				.b.3
a. Proximity focused image intensifier tubes having the photocathode				
focused image intensifier tubes having the photocathode				
image intensifier tubes having the photocathode				
intensifier tubes having the photocathode				
tubes having the photocathode				
having the photocathode				
the photocathode				
photocathode				
deposited				
				aeposited

The texts of points a, b and c in this entry do not correspond with those of points a, b and c of 6A005.

a

		on
		а
		transparent
		conductive
		coating
		to
		decrease
		photocathode
		sheet
		resistance;
	b.	Gate
		silicon
		intensifier
		target
		(SIT)
		videcon
		tubes,
		where
		a fast
		system
		allows
		gating
		the
		photoelectrons
		from
		the
		photocathode
		before
		they
		impinge
		on
		the
		SIT
		plate;
	с.	Kerr
		or
		Pockels
		cell
		electro-
		optical
		shuttering;
	d.	Other
		framing
		tubes
		and
		solid-
		state
		imaging
		devices
		having
		a
The texts of points a, b and c in this entry do not correspond with those of points a	h and a af (A007	<u>u</u>

a

I.6A.008	6A205	'Lasers', 'laser' amplifiers and oscillators, other than those specified in I.0A.002.g.5., I.0A.002.h.6. and I.6A.001; as follows: a. Argon ion 'lasers' having both of the following characteristics: 1. Operating at wavelengths
		fast- image gating time of less than 50 ns specially designed for cameras specified in I.6A.007.b.3.; c. Radiation-hardened TV cameras, or lenses therefor, specially designed or rated as radiation hardened to withstand a total radiation dose greater than 50 × 10^3 Gy(silicon) (5 × 10^6 rad (silicon)) without operational degradation. Technical Notes: The term Gy(silicon) refers to the energy in Joules per kilogram absorbed by an unshielded silicon sample when exposed to ionising radiation

			between
			400 nm
			and 515
			nm; and
		2.	An
		4.	
			average
			output
			power
			greater
			than 40
	1.	T	W;
	b.	Tunable	
		single-m	
		laser osci	
		having al	
		the follow	
		character	istics:
		1.	Operating
			at
			wavelengths
			between
			300 nm
			and 800
			nm;
		2.	An
			average
			output
			power
			greater
			than 1 W;
		3.	A
		5.	
			repetition
			rate
			greater
			than 1
		4	kHz; and
		4.	Pulse
			width less
			than 100
		т ! !	ns;
	c.		pulsed dye
			olifiers and
			s, having
			following
		character	
		1.	Operating
			at
			wavelengths
			between
			300 nm
			and 800
			nm;
orrespond with those of point	sa hand cof	64005	

		2.	An
			average
			output
			power
			greater
			than 30
			W;
		3.	A
			repetition
			rate
			greater
			than 1
			kHz; and
		4.	Pulse
			width less
			than 100
			ns;
		Note:	
		I.6A.008	.c. does
			ibit single
		mode osc	
	d.	Pulsed ca	
		dioxide '	
		having a	
		the follow	
		character	
		1.	Operating
			at
			wavelengths
			between
			9 000 nm
			and 11
		2	000 nm;
		2.	A
			repetition
			rate
			greater than 250
			Hz;
		3.	An
		5.	average
			output
			power
			greater
			than 500
			W; and
		4.	Pulse
			width of
			less than
			200 ns;
	e.	Para-hyd	
		Raman s	
try do not correspond with those of points	s a, b and c of		

<i>Status: Point in time view as at 24/06/2008.</i>		
Changes to legislation: There are currently no known outstanding effects for the		
Council Regulation (EC) No 423/2007 (repealed). (See end of Document for details)		

		2. Incorporating frequency doubling to give an output wavelength of 500 nm or more but not exceeding 550 nm and having an average output power exceeding 40 W.
I.6A.009	6A225	Velocity interferometers for measuring velocities exceeding 1 km/s during time intervals of less than 10 microseconds. Note: I.6A.009 includes velocity interferometers such as VISARs (Velocity interferometer systems for any reflector) and DLIs (Doppler laser interferometers).
I.6A.010	6A226	 Pressure sensors, as follows: a. Manganin gauges for pressures greater than 10 GPa; b. Quartz pressure transducers for pressures greater than 10 GPa
I.6A.011 a The texts of points a, b and c i	ex 6B108*	Systems specially designed for radar cross section measurement usable for 'missiles' and their subsystems.

I.6B

TECHNOLOGY, INCLUDING SOFTWARE

No	Relevant item(s) from Annex to Regulation (EC) No 1183/2007	Description
I.6B.001	6D102	'Software' specially designed or modified for the 'use' of goods specified in I.6A.005.
I.6B.002	6D103	'Software' which processes post-flight, recorded data, enabling determination of vehicle position throughout its flight path, specially designed or modified for 'missiles'. Technical Notes: In I.6B.002 'missile' means complete rocket systems and unmanned aerial vehicle systems capable of a range exceeding 300 km.
I.6B.003	<i>ex</i> 6E001	'Technology' according to the General Technology Note for the 'development' of equipment, materials or 'software' specified in I.6A.001, I.6A.002.c, I.6A.003, I.6A.004 to I.6A.010, I.6B.001 or I.6B.002.
I.6B.004	<i>ex</i> 6E002	'Technology' according to the General Technology Note for the 'production' of equipment or materials specified in I.6A.001, I.6A.002.c or I.6A.003 to I.6A.010.
I.6B.005	<i>ex</i> 6E101	'Technology' according to the General Technology Note for the 'use' of equipment or 'software' specified in I.6A.002 to I.6A.005, I.6A.011, I.6B.001 or I.6B.002.
I.6B.006	<i>ex</i> 6E201	'Technology' according to the General Technology Note for the 'use' of equipment

	specified in I.6A.001 or I.6A.006 to I.6A.010.

I.7 NAVIGATION AND AVIONICS

I.7A

GOODS

No	Relevant item(s) from Annex to Regulation (EC) No 1183/2007	Description
I.7A.001	<i>ex</i> 7A002* (<i>ex</i> 7A002.a and <i>ex</i> 7A002.d)	Gyros having any of the following characteristics, and specially designed components therefor: N.B.: See also I.7A.003. a. A 'drift rate''stability', when measured in a 1 g environment over a period of one month and with respect to a fixed calibration value, of less (better) than 0,5 degree per hour when specified to function at linear acceleration levels up to and including 100 g; or b. Specified to function at linear acceleration levels exceeding 100 g.
I.7A.002	7A101, ex 7A001.a.3	Accelerometers as follows, and specially designed components therefor: a. Linear accelerometers, designed for use in inertial navigation systems or in guidance systems of all types, usable in 'missiles', having all the following characteristics, and specially designed

I	compone	ents
	therefor;	into
	1.	А
	1.	'bias''repeatability'
		of less
		(better)
		than 1 250
		micro g;
	2	and
	2.	A 'scale
		factor''repeatability
		of less
		(better)
		than 1 250
		ppm;
	Note: I.7.	A.002.a.
	does not	specify
	acceleron	neters
	which ar	e specially
	designed	and
		d as MWD
	(Measure	
	While Dr	
	Sensors f	
	in downh	
		perations.
	Technica	
		T
	1.	In
		I.7A.002.a.
		'missile'
		means
		complete
		rocket
		systems
		and
		unmanned
		aerial
		vehicle
		systems
		capable
		of a range
		exceeding
		300 km;
	2.	In
		I.7A.002.a.
		<i>the</i>
		measurement
		of 'bias'
		and 'scale
		factor'
		refers to a

<i>Status:</i> Point in time view as at 24/06/2008.	
Changes to legislation: There are currently no known outstanding effects for the	
Council Regulation (EC) No 423/2007 (repealed). (See end of Document for details)	

		one sigma standard deviation with respect to a fixed calibration over a period of one year; b. Continuous output accelerometers specified to function at acceleration levels exceeding 100 g.
I.7A.003	7A102*	All types of gyros, other than those specified in I.7A.001, usable in 'missiles', with a rated 'drift rate' 'stability' of less than 0,5° (1 sigma or rms) per hour in a 1 g environment and specially designed components therefor. Technical Note: In I.7A.003 'missile' means complete rocket systems and unmanned aerial vehicle systems capable of a range exceeding 300 km.
I.7A.004	<i>ex</i> 7A103 (7A103.a, <i>ex</i> 7A103.b and 7A103.c)	Instrumentation, navigation equipment and systems, as follows; and specially designed components therefor: Inertial or other equipment using accelerometers specified in I.7A.002 or gyros specified in I.7A.001 or I.7A.003 and systems incorporating such equipment; Integrated flight instrument systems, which include gyrostabilisers or automatic

modified 'missiles 'Integrat navigatic systems' or modif for 'miss and capa of provic a navigat accuracy m Circle	ed on , designed ied iles' ble ling tional of 200 of Equal ity (CEP)
<i>1</i> . a.	An 'integrated navigation system' typically incorporates the following components: An inertial measurement
b.	measurement device (e.g., an attitude and heading reference system, inertial reference unit, or inertial navigation system); One or
D.	One or more external sensors used to update the position and/or velocity, either periodically or

		continuously throughout the flight (e.g., satellite navigation receiver, radar altimeter, and/or Doppler radar); and c. Integration hardware and software; 2. In I.7A.004.c. 'missile' means complete rocket systems and unmanned aerial vehicle systems capable of a range exceeding 300 km.
I.7A.005	7A104	Gyro-astro compasses and other devices, which derive position or orientation by means of automatically tracking celestial bodies or satellites and specially designed components therefor.
I.7A.006	7A105	Receiving equipment for Global Navigation Satellite Systems (GNSS; e.g. GPS, GLONASS, or Galileo), having any of the following characteristics, and specially designed components therefor: a. Designed or modified for use in space launch

b.	 vehicles in I.9A.0 unmanne vehicles in I.9A.0 sounding specified I.9A.005 N.B.: Sea Military Controls receiving for rocke missiles. Designed or modifi for airbou application having au following 1. 2. 	01, d aerial specified 03 or rockets in ; or e also Goods for g equipment ts or 1 ied rne ons and ny of the
		designed

<i>Status: Point in time view as at 24/06/2008.</i>
Changes to legislation: There are currently no known outstanding effects for the
Council Regulation (EC) No 423/2007 (repealed). (See end of Document for details)

		steerable antenna) to function in an environment of active or passive countermeasures. Note: I.7A.006.b.2. and I.7A.006.b.3. do not prohibit equipment designed for commercial, civil or 'Safety of Life' (e.g., data integrity, flight safety) GNSS services
I.7A.007	7A106	Altimeters of radar or laser radar type, designed or modified for use in space launch vehicles specified in I.9A.001 or sounding rockets specified in I.9A.005. N.B.: See also Military Goods Controls for altimeters for rockets or missiles.
I.7A.008	7A115	Passive sensors for determining bearing to specific electromagnetic source (direction finding equipment) or terrain characteristics, designed or modified for use in space launch vehicles specified in I.9A.001 or sounding rockets specified in I.9A.005. N.B.: See also Military Goods Controls for passive sensors for rockets or missiles. Note: I.7A.008 includes sensors for the following equipment: a. Terrain contour mapping equipment; b. Imaging sensor equipment (both active and passive);

		c. Passive interferometer equipment.
I.7A.009	7A116	 Flight control systems and servo valves, as follows; designed or modified for use in space launch vehicles specified in I.9A.001 or sounding rockets specified in I.9A.005. N.B.: See also Military Goods Controls for flight control systems and servo valves for rockets or missiles. a. Hydraulic, mechanical, electromechanical flight control systems (including fly-by-wire types); b. Attitude control servo valves designed or modified for the systems specified in I.7A.009.a. or I.7A.009.b., and designed or modified to operate in a vibration environment greater than 10 g rms between 20 Hz and 2 kHz.
I.7A.010	7A117	'Guidance sets', usable in 'missiles' capable of achieving system accuracy of 3,33 % or less of the range (e.g., a 'CEP' of 10 km or less at a range of 300 km).
I.7A.011	7B001	Test, calibration or alignment equipment specially designed for equipment specified in I.7A.001 to I.7A.010.
I.7A.012	7B002	Equipment, as follows, specially designed to characterize mirrors for ring 'laser' gyros: N.B.: See also I.7A.014.

	Status: Point in time view a. unges to legislation: There are currently no cil Regulation (EC) No 423/2007 (repealed	o known outstanding effects for the
	0 () (1	
		 a. Scatterometers having a measurement accuracy of 10 ppm or less (better); b. Profilometers having a measurement accuracy of 0,5 nm (5 angstrom) or less (better).
I.7A.013	7B003*	 Equipment specially designed for the 'production' of equipment specified in I.7A.001 to I.7A.010. Note: I.7A.013 includes: a. Gyro tuning test stations; b. Gyro dynamic balance stations; c. Gyro run-in/motor test stations; d. Gyro evacuation and fill stations; e. Centrifuge fixtures for gyro bearings; f. Accelerometer axis align stations; g. (reserved) h. Accelerometer test stations; i. Inertial measurement unit (IMU) module testers; j. Inertial measurement unit (IMU) platform testers; k. Inertial measurement unit (IMU) stable element handling fixtures; 1. Inertial measurement unit (IMU) platform balance fixture.
I.7A.014	7B102	Reflectometers specially designed to characterise mirrors, for 'laser' gyros, having a measurement

		accuracy of 50 ppm or less (better).	
I.7A.015	7B103	 'Production facilities' and 'production equipment' as follows: a. 'Production facilities' specially designed for equipment specified in I.7A.010; b. 'Production equipment', and other test, calibration and alignment equipment, other than that specified in I.7A.011 to I.7A.013, designed or modified to be used with equipment specified in I.7A.001 to I.7A.010. 	

I.7B

TECHNOLOGY, INCLUDING SOFTWARE

No	Relevant item(s) from Annex to Regulation (EC) No 1183/2007	Description		
I.7B.001	<i>ex</i> 7D101	'Software' specially designed or modified for the 'use' of equipment specified in I.7A.001 to I.7A.008, I.7A.009.a., I.7A.009.b. or I.7A.011 to I.7A.015		
I.7B.002	7D102	Integration 'software' as follows:		
		a. Integration 'software' for the equipment specified in I.7A.004.b.;		
		b. Integration 'software' specially designed for the equipment specified in I.7A.004.a.;		
		c. Integration 'software' designed		

Status: Point in time view as at 24/06/2008.

	unges to legislation: There are currently no <i>i</i> cil Regulation (EC) No 423/2007 (repealed).	
		or modified for the equipment specified in I.7A.004.c. Note: A common form of integration 'software' employs Kalman filtering.
I.7B.003	7D103	'Software' specially designed for modelling or simulation of the 'guidance sets' specified in I.7A.010 or for their design integration with the space launch vehicles specified in I.9A.001 or sounding rockets specified in I.9A.005. Note: 'Software' specified in I.7B.003 remains prohibited when combined with specially designed hardware specified in I.4A.003.
I.7B.004	<i>ex</i> 7E001	'Technology' according to the General Technology Note for the 'development' of equipment or 'software' specified in I.7A.001 to I.7A.015, or in I.7B.001 to I.7B.003.
I.7B.005	<i>ex</i> 7E002	'Technology' according to the General Technology Note for the 'production' of equipment specified in I.7A.001 to I.7A.015.
I.7B.006	7E101	'Technology' according to the General Technology Note for the 'use' of equipment specified in I.7A.001 to I.7A.015 or I.7B.001 to I.7B.003.
I.7B.007	7E102	'Technology' for protection of avionics and electrical subsystems against electromagnetic pulse (EMP) and electromagnetic interference (EMI) hazards, from external sources, as follows:

		b. c.	Design 'technology' for the configuration of hardened electrical circuits and subsystems; Design 'technology' for the determination of hardening criteria of I.7B.007.a. and I.7B.007.b.
I.7B.008	7E104	integrati control, propulsi manager	logy' for the on of the flight guidance, and on data into a flight nent system for ation of rocket system y.

I.9 AEROSPACE AND PROPULSION

I.9A

GOODS

No	Relevant item(s) from Annex to Regulation (EC) No 1183/2007	Description
I.9A.001	<i>ex</i> 9A004	Space launch vehicles N.B.: See also I.9A.005. For rockets and missiles see Military Goods Controls. <i>Note: I.9A.001 does not</i> <i>prohibit payloads.</i>
I.9A.002	9A011	Ramjet, scramjet or combined cycle engines and specially designed components therefor. N.B.: See also I.9A.012 and I.9A.016.
I.9A.003	<i>ex</i> 9A012.a	'Unmanned aerial vehicles' ('UAVs'), associated systems, equipment and components as follows: 'UAVs' having any of the following: Having all of the following:

	a.	Having	
		any	
		of	
		the	
		following	τ.
		1.	An
		1.	
			autonomous
			flight
			control
			and
			navigation
			capability
			(e.g.,
			an
			autopilot
			with
			an
			Inertial
			Navigation
			System);
			or
		2.	Capability
			of
			controlled-
			flight
			out
			of
			the
			direct
			vision
			range
			involving
			a
			human
			operator
			(e.g., televisual
			remote
			control);
	b.	Unvina	and
	υ.	Having	
		any of	
		the	· ·
		following	
		1.	Incorporating
			an
			aerosol
			dispensing
			system/
			mechanism
			with
			а

		capacity
		greater than
		20
		litres;
		or
	2.	Designed
		or modified
		to
		incorporate
		an
		aerosol dispensing
		system/
		mechanism
		with
		a
		capacity greater
		than
		20
		litres;
	Capable of	or
	delivering	
	a payload	
	to a range	
	of at least 300 km.	
Teo	chnical Notes:	
1.	An aerosol	
	consists of particulate	
	or liquids	
	other	
	than fuel	
	components, by-	
	products	
	or	
	additives,	
	as part of the	
	payload	
	to be	
	dispersed	
	in the atmosphere.	
	Examples	
	of aerosols	
	include	

			pesticides for crop dusting and dry chemicals for cloud seeding.
			An aerosol dispensing system/ mechanism contains all those devices (mechanical, electrical, hydraulic, etc.), which are necessary for storage and dispersion of an aerosol into the atmosphere. This includes the possibility of aerosol injection into the combustion exhaust vapour and into the propeller slip stream
I.9A.004	9A101	Turbojet and turbo engines (including turbocompound en follows: a. Engines I both of th following character 1.	gines), as having 1e g

		modified 'missiles	
I.9A.005	9A104	Sounding rockets, a range of at least N.B.: See also I.9. For rockets and m Military Goods Co	300 km. A.001. issiles see
I.9A.006	9A105	rocket ei	s: A.017. ropellant ngines n'missiles', total

<i>Status: Point in time view as at 24/06/2008.</i>
Changes to legislation: There are currently no known outstanding effects for the
Council Regulation (EC) No 423/2007 (repealed). (See end of Document for details)

		b.	than 1,1 Liquid p rocket er usable in rocket sy unmanne vehicles, of a rang km, othe those spe I.9A.006 a total in capacity	ropellant ngines, n complete ystems or ed aerial , capable ge of 300 er than ecified in b.a., having
I.9A.007	9A106	usable in follows,	-	s', as designed ropulsion e liners t or ion s; nozzles; ector sub- al Note: es of of g thrust pontrol d in

l	5.	Thrust
	5.	tabs.
d.	Liquid an	
	slurry pro	
	(includin	
	oxidisers	
	systems,	
		designed
	compone	
		designed
	or modif	
		n vibration
	environn	
	greater th	
	and 2 kH	veen 20 Hz
	Note: Th	
	servo val	
		ves und vecified in
		.d., are the
	following	
	a.	Servo
		valves
		designed
		for flow
		rates
		equal to
		or greater
		than 24
		litres per
		minute, at an
		absolute
		pressure
		equal to
		or greater
		than 7
		MPa, that
		have an
		actuator
		response
		time of
		less than
	b.	100 ms; Pumps,
		for liquid
		propellants,
		with shaft
		speeds
		equal to
		or greater
		than 8
		000 r.p.m.

Status: Point in time view as at 24/06/2008.

Changes to legislation: There are currently no known outstanding effects for the Council Regulation (EC) No 423/2007 (repealed). (See end of Document for details) or with discharge pressures equal to or greater than 7 MPa. I.9A.008 9A107 and ex 9A007.a Solid propellant rocket engines, usable in complete rocket systems or unmanned aerial vehicles, capable of a range of 300 km, having total impulse capacity equal to or greater than 0,841 MNs. N.B.: See also I.9A.017. I.9A.009 Components usable in 9A108 'missiles', as follows, specially designed for solid rocket propulsion systems: a. Rocket motor cases and 'insulation' components therefor: b. Rocket nozzles; Thrust vector c. control subsystems. Technical Note: Examples of methods of achieving thrust vector control specified in *I.9A.009.c. are:* 1. Flexible nozzle; 2. Fluid or secondary gas injection; 3. Movable engine or nozzle; 4. Deflection of exhaust gas stream (jet vanes or probes); or

		5. Thrust tabs.
I.9A.010	9A109	 Hybrid rocket motors, usable in 'missiles', and specially designed components therefor. N.B.: See also I.9A.017. Technical Note: In I.9A.010 'missile' means complete rocket systems and unmanned aerial vehicle systems capable of a range exceeding 300 km.
I.9A.011	9A110	Composite structures, laminates and manufactures thereof, specially designed for use in space launch vehicles specified in I.9A.001 or sounding rockets specified in I.9A.005 or the subsystems specified in I.9A.006.a., I.9A.007 to I.9A.009, I.9A.014 or I.9A.017. N.B.: See also Military Goods Controls for composite structures, laminates and manufactures thereof, for rockets and missiles.
I.9A.012	<i>ex</i> 9A111*	Pulse jet engines, usable in 'missiles', and specially designed components therefor. N.B.: See also I.9A.002 and I.9A.016.
I.9A.013	9A115	Launch support equipment as follows: N.B.: See also Military Goods Controls for launch support equipment for rockets and missiles. a. Apparatus and devices for handling, control, activation or launching, designed or modified for space launch vehicles specified in I.9A.001, unmanned aerial

<i>Status: Point in time view as at 24/06/2008.</i>	
Changes to legislation: There are currently no known outstanding effects for the	
Council Regulation (EC) No 423/2007 (repealed). (See end of Document for details)	

		vehicles specified in I.9A.003 or sounding rockets specified in I.9A.005; b. Vehicles for transport, handling, control, activation or launching, designed or modified for space launch vehicles specified in I.9A.001 or sounding rockets specified in I.9A.005.
I.9A.014	9A116	Reentry vehicles, usable in 'missiles', and equipment designed or modified therefor, as follows:a.Reentry vehicles;b.Heat shields and components therefor fabricated of ceramic or ablative materials;c.Heat sinks and components therefor fabricated of light-weight, high heat capacity materials;d.Electronic equipment specially designed for reentry vehicles.
I.9A.015	9A117	Staging mechanisms, separation mechanisms, and interstages, usable in 'missiles'.
I.9A.016	<i>ex</i> 9A118*	Devices to regulate combustion usable in engines, which are usable in 'missiles', specified in I.9A.002 or I.9A.012.
I.9A.017	9A119	Individual rocket stages, usable in complete rocket systems or unmanned aerial vehicles, capable of a range of 300 km, other than those

		specified in I.9A.006, I.9A.008 and I.9A.010.
I.9A.018	9A120	Liquid propellant tanks specially designed for propellants specified in I.1A.029 or 'other liquid propellants', used in rocket systems capable of delivering at least a 500 kg payload to a range of at least 300 km. <i>Note: In I.9A.018 'other</i> <i>liquid propellants' includes,</i> <i>but is not limited to,</i> <i>propellants specified in the</i> <i>Military Goods Controls</i>
I.9A.019		(reserved)
I.9A.020	<i>ex</i> 9B105*	Wind tunnels for speeds of Mach 0,9 or more, usable for 'missiles' and their subsystems.
I.9A.021	9B106	Environmental chambers and anechoic chambers, as follows: a. Environmental chambers capable of simulating the following flight conditions: 1. Vibration environments equal to or greater than 10 g rms, measured 'bare table', between 20 Hz and 2 kHz imparting forces equal to or greater than 5 kN; and 2. Altitude equal to or greater than 15 km; or

	3. Technica	Temperature range of at least 223 K (- 50 °C) to 398 K (+ 125 °C); l Notes:
	1.	I.9A.021.a. describes systems that are capable of generating a vibration environment with a single wave (e.g., a sine wave) and systems capable of generating a broad band random vibration (i.e., power spectrum);
		In I.9A.021.a.1. 'bare table' means a flat table, or surface with no fixture or fittings.y
b.	Environn chambers of simula following condition 1.	s capable tting the g flight

		2.	sound pressure level of 140 dB or greater (referenced to 20 μ Pa) or with a total rated acoustic power output of 4 kW or greater; and Altitude equal to or greater than 15 km; or Temperature range of at least 223 K (- 50 °C) to 398 K (+ 125 °C).
I.9A.022	ex 9B115	Specially designed 'production equip the systems, sub-s and components s I.9A.002, I.9A.00 to I.9A.010, I.9A. I.9A.014 to I.9A.0	ment' for systems pecified in 4, I.9A.006 012,
I.9A.023	ex 9B116	Specially designed 'production facilit the space launch v specified in I.9A.(systems, sub-syste components speci I.9A.002, I.9A.00 to I.9A.010, I.9A. I.9A.014 to I.9A.(N.B.: See also Mi Goods Controls fo 'production facilit rockets and missil	ties' for vehicles 001, or ems, and fied in 4, 1.9A.005 012, or 017. litary or ties' for
I.9A.024	<i>ex</i> 9B117*	Test benches and for solid or liquid rockets or rocket r	propellant

<i>Status:</i> Point in time view as at 24/06/2008.	
Changes to legislation: There are currently no known outstanding effects for the	
Council Regulation (EC) No 423/2007 (repealed). (See end of Document for details)	

		having either of the following characteristics: The capacity to handle more than 90 kN of thrust; or Capable of simultaneously measuring the three axial thrust components.
I.9A.025	9C108	'Insulation' material in bulk form and 'interior lining', for rocket motor cases usable in 'missiles' or specially designed for 'missiles'. Technical Note: In I.9A.025 'missile' means complete rocket systems and unmanned aerial vehicle systems capable of a range exceeding 300 km.
I.9A.026	9C110	Resin impregnated fibre prepregs and metal coated fibre preforms therefor, for composite structures, laminates and manufactures specified in I.9A.011, made either with organic matrix or metal matrix utilising fibrous or filamentary reinforcements having a 'specific tensile strength' greater than 7,62 \times 10 ⁴ m and a 'specific modulus' greater than 3,18 \times 10 ⁶ m. N.B.: See also I.1A.024 and I.1A.034. <i>Note: The only resin</i> <i>impregnated fibre prepregs</i> <i>specified in entry I.9A.026</i> <i>are those using resins</i> <i>with a glass transition</i> <i>temperature (T_g), after cure,</i> <i>exceeding 418 K (145 °C) as</i> <i>determined by ASTM D4065</i> <i>or equivalent.</i>

I.9B

TECHNOLOGY, INCLUDING SOFTWARE

No	Relevant item(s) from Annex to Regulation (EC) No 1183/2007	Description
I.9B.001	<i>ex</i> 9D001	'Software' specially designed or modified for the 'development' of equipment or 'technology' specified in I.9A.002, I.9A.009, I.9A.012, I.9A.015 or I.9A.016.
I.9B.002	9D101	'Software' specially designed or modified for the 'use' of goods specified in I.9A.020, I.9A.021, I.9A.023 or I.9A.024.
I.9B.003	9D103	'Software' specially designed for modelling, simulation or design integration of the space launch vehicles specified in I.9A.001 or sounding rockets specified in I.9A.005, or the subsystems specified in I.9A.006.a., I.9A.007, I.9A.009, I.9A.014 or I.9A.017. Note: 'Software' specified in I.9B.003 remains prohibited when combined with specially designed hardware specified in I.4A.003.
I.9B.004	<i>ex</i> 9D104	['] Software' specially designed or modified for the 'use' of [^{x1} goods specified in I.9A.002], I.9A.004, I.9A.006, I.9A.007.c., I.9A.007.d., I.9A.008, I.9A.009.c., I.9A.010, I.9A.012, I.9A.013.a., I.9A.014.d., I.9A.015 or I.9A.016.
I.9B.005	9D105	'Software' which coordinates the function of more than one subsystem, specially designed or modified for 'use' in space launch vehicles specified in I.9A.001 or sounding rockets specified in I.9A.005.

I.9B.006	<i>ex</i> 9E001	'Technology' according to the General Technology Note for the 'development' of equipment or 'software' specified in I.9A.001, I.9A.003, I.9A.021 to I.9A.024, or I.9B.002 to I.9B.005.
I.9B.007	<i>ex</i> 9E002	'Technology' according to the General Technology Note for the 'production' of equipment specified in I.9A.001, I.9A.003 or I.9A.021 to I.9A.024.
I.9B.008	9E101	'Technology' according to the General Technology Note for the 'development' or 'production' of goods specified in I.9A.004 to I.9A.017.
I.9B.009	<i>ex</i> 9E102	'Technology' according to the General Technology Note for the 'use' of space launch vehicles specified in I.9A.001, or goods specified in I.9A.002, I.9A.004 to I.9A.017, I.9A.020 to I.9A.024, I.9B.002 or I.9B.003.]

Editorial Information

X1 Substituted by Corrigendum to Commission Regulation (EC) No 116/2008 of 28 January 2008 amending Council Regulation (EC) No 423/2007 concerning restrictive measures against Iran (Official Journal of the European Union L 35 of 9 February 2008).

ANNEX II

Goods and technology referred to in Article 3

Notes:

- 1. Unless otherwise stated, reference numbers used in the column below entitled 'Description' refer to the descriptions of dual-use items and technology set out in Annex I to Regulation (EC) No 1334/2000.
- 2. A reference number in the column below entitled 'Related item from Annex I to Regulation (EC) No 394/2006' means that the characteristics of the item described in

the column 'Description' lie outside the parameters set out in the description of the dual-use entry referred to.

- 3. Definitions of terms between 'single quotation marks' are given in a technical note to the relevant item.
- 4. Definitions of terms between 'double quotation marks' can be found in Annex I to Regulation (EC) No 394/2006.
- II.A. GOODS

A0

NUCLEAR MATERIALS, FACILITIES, AND EQUIPMENT

No	Description	Related item from Annex I to Regulation (EC) No 394/2006
II.A0.001	Hollow cathode lamps as follows: a. Iodine hollow cathode lamps with windows in pure silicon or quartz b. Uranium hollow cathode lamps	
II.A0.002	Faraday isolators in the wavelength range 500–650 nm	
II.A0.003	Optical gratings in the wavelength range 500–650 nm	
II.A0.004	Optical fibres in the wavelength range 500– 650 nm coated with anti- reflecting layers in the wavelength range 500–650 nm and having core diameter greater than 0,4 mm but not exceeding 2 mm	
II.A0.005	Nuclear reactor vessel components and testing equipment, other than those specified in 0A001, as follows:1.Seals 2.2.Internal components3.Sealing, testing and measurement equipment	0A001

II.A0.006	Nuclear detection systems for detection, identification or quantification of radioactive materials and radiation of nuclear origin and specially designed components therefor, other than those specified in 0A001.j or 1A004c	0A001.j 1A004.c
II.A0.007	Bellows-sealed valves made of aluminium alloy or stainless steel type 304 or 316 L. Note: This item does not control bellow valves defined in 0B001.c.6 and 2A226	0B001.c.6 2A226
II.A0.008	Plane, convex and concave mirrors, coated with high- reflecting or controlled multi- layers in the wavelength range 500 nm-650 nm	0B001.g.5
II.A0.009	Lenses, polarisers, half-wave retarder plates ($\lambda/2$ plates), quarter-wave retarder plates ($\lambda/4$ plates), laser windows in silicon or quartz and rotators, coated with anti-reflecting layers in the wavelength range 500–650 nm	0B001.g
II.A0.010	Pipes, piping, flanges, fittings made of, or lined with nickel or nickel alloy containing more than 40 % nickel by weight, other than those specified in 2B350.h.1.	2B350
II.A0.011	Vacuum pumps other than those specified in 0B002.f.2. or 2B231, as follows: — Turbomolecular pumps having a flowrate equal to or greater than 400 l/s — Roots-type vacuum roughing pumps having a volumetric aspiration flowrate greater than 200 m ³ / h Bellows-sealed, scroll, dry compressor, and bellows	0B002.f.2 2B231

	sealed, scroll, dry vacuum pumps	
II.A0.012	Shielded enclosures for the manipulation, storage and handling of radioactive substances (hot cells).	0B006
II.A0.013	'Natural uranium' or 'depleted uranium' or thorium in the form of metal, alloy, chemical compound or concentrate and any other material containing one or more of the foregoing, other than those specified in 0C001.	0C001

A1

MATERIALS, CHEMICALS, 'MICRO-ORGANISMS' AND 'TOXINS'

No	Description	Related item from Annex I to Regulation (EC) No 394/2006
II.A1.001	Bis(2-ethylhexyl) phosphoric acid (HDEHP or D2HPA) CAS 298-07-7 solvent in any quantity, with a purity greater than 90 %	
II.A1.002	Fluorine gas (Chemical Abstract Number (CAS) 7782-41-4), with a purity greater than 95 %	
II.A1.003	 Seals and gaskets made of any of the following materials a. Copolymers of vinylidene fluoride having 75 % or more beta crystalline structure without stretching; b. Fluorinated polyimides containing 10 % by weight or more of combined fluorine; c. Fluorinated phosphazene elastomers containing 30 % by 	

	Status: Point in time view as at 24/06/2008. ges to legislation: There are currently no known outstanding effects for the Regulation (EC) No 423/2007 (repealed). (See end of Document for details)
	 weight or more of combined fluorine; d. Polychlorotrifluoroethylene (PCTFE, e.g. Kel-F ®); e. Viton fluoro- elastomers; f. Polytetrafluoroethylene (PTFE).
II.A1.004	Personal equipment for detecting radiation of nuclear origin, including personal dosimeters Note: This item does not control nuclear detection systems defined in item 1A004.c
II.A1.005	Electrolytic cells for fluorine production with an output capacity greater than 100 g of fluorine per hour. Note: This item does not control electrolytic cells defined in item 1B225
II.A1.006	Platinised catalysts, other than those specified in 1A225, specially designed or prepared for promoting the hydrogen isotope exchange reaction between hydrogen and water for the recovery of tritium from heavy water or for the production of heavy water and substitutes therefor.
II.A1.007	Aluminium and its alloys, other than those specified in 1C002.b.4 or 1C202.a, in crude or semi-fabricated form having either of the following characteristics: a.1C002.b.4 1C202.aa.Capable of an ultimate tensile strength of 460 MPa or more at 293 K (20 °C); orMPa or more at 293 K (20 °C); orb.Having a tensile strength of 415 MPa or more at 298 K (25 °C).MPa or more at 298 K (25 °C).

II.A1.008	Magnetic metals, of all types and of whatever form, having an initial relative permeability of 120 000 or more and a thickness between 0,05 and 0,1 mm1C003.a
П.А1.009	'Fibrous or filamentary materials' or prepregs, as follows:1C010.a, 1C010.b, 1C210.a, 1C210.ba.Carbon or aramid 'fibrous or filamentary materials' having either of the following characteristics:1.1.A 'specific modulus' exceeding 10×10^6 m; or2.2.A 'specific tensile strength' exceeding 17×10^4 m;b.Glass 'fibrous or filamentary materials' having either of the following characteristics:1.A 'specific tensile strength' exceeding 17×10^4 m;b.Glass 'fibrous or filamentary materials' having either of the following characteristics:1.A 'specific modulus' exceeding 3.18×10^6 m; or2.A 'specific tensile strength' exceeding 3.18×10^6 m; orc.Thermoset resin
	impregnated continuous 'yarns',

Changes to legisla	<i>Status:</i> Point in time view as at 24/06/2008. <i>ation:</i> There are currently no known outstan (EC) No 423/2007 (repealed). (See end of E	ding effects for the
	'rovings', 'tows' or 'tapes' with a width of 15 mm or less (prepregs), made from carbon or glass 'fibrous or filamentary materials' other than those specified in II.A1.010.a. or b. Note: This item does not control fibrous or filamentary materials defined in items 1C010.a, 1C010.b, 1C210.a and 1C210.b	
II.A1.010	 Resin-impregnated or pitch-impregnated fibres (prepregs), metal or carbon- coated fibres (preforms) or 'carbon fibre preforms', as follows: a. made from 'fibrous or filamentary materials' specified in II.A1.009 above; b. Epoxy resin 'matrix' impregnated carbon 'fibrous or filamentary materials' (prepregs), specified in 1C010.a., 1C010.b. or 1C010.c., for the repair of aircraft structures or laminates, in which the size of individual sheets of prepreg does not exceed 50 cm × 90 cm; c. Prepregs specified in 1C010.a., 1C010.b. or 1C010.c., when impregnated with phenolic or epoxy resins having a glass transition temperature (Tg) less than 433 K 	1C010.e, 1C210

	 (160 °C) and a cure temperature lower than the glass transition temperature. Note: This item does not control fibrous or filamentary materials defined in item 1C010.e 	
II.A1.011	Reinforced silicon carbide ceramic composites usable for nose tips, re-entry vehicles, nozzle flaps, usable in 'missiles', other than specified in 1C107.	1C107
II.A1.012	Maraging steels, other than those specified in 1C116 or 1C216, 'capable of' an ultimate tensile strength of 2 050 MPa or more, at 293 K (20 °C). Technical Note: The phrase maraging steel 'capable of' encompasses maraging steel before or after heat treatment.	1C216
II.A1.013	Tungsten, tantalum, tungsten carbide, tantalum carbide and alloys, having both of the following characteristics: a. In forms having a hollow cylindrical or spherical symmetry (including cylinder segments) with an inside diameter between 50 mm and 300 mm; and b. A mass greater than 5 kg. Note: This item does not control tungsten, tungsten carbide and alloys defined in item 1C226	1C226

A2

MATERIALS PROCESSING

No	Description	Related item from Annex I to Regulation (EC) No 394/2006
II.A2.001	 Vibration test systems, equipment and components therefor, other than those specified in 2B116: a. Vibration test systems employing feedback or closed loop techniques and incorporating a digital controller, capable of vibrating a system at an acceleration equal to or greater than 0,1g rms between 0,1 Hz and 2 kHz and imparting forces equal to or greater than 50 kN, measured 'bare table'; b. Digital controllers, combined with specially designed vibration test software, with a 'real-time bandwidth' greater than 5 kHz designed for use with vibration test systems specified in a.; c. Vibration thrusters (shaker units), with or without associated amplifiers, capable of imparting a force equal to or greater than 50 kN, measured 'bare table'; 	

	 systems specified in a.; d. Test piece support structures and electronic units designed to combine multiple shaker units in a system capable of providing an effective combined force equal to or greater than 50 kN, measured 'bare table', and usable in vibration systems specified in a. Technical note: 'bare table' means a flat table, or surface, with no fixture or fittings. 	
II.A2.002	Machine tools for grinding having positioning accuracies with 'all compensations available' equal to or less (better) than 15 µm according to ISO 230/2 (1988) (1) or national equivalents along any linear axis. Note: This item does not control machine tools for grinding defined in items 2B201.b and 2B001.c	2B201.b, 2B001.c
II.A2.002a	Components and numerical controls, specially designed for machine tools specified in 2B001, 2B201, or in II.A2.002 above.	
II.A2.003	Balancing machines and related equipment as follows: a. Balancing machines, designed or modified for dental or other medical equipment, having all the following characteristics: 1. Not capable of balancing	2B119

II.A2.004

Status: Point in time view as at 24/06/2008.	
Changes to legislation: There are currently no known outstanding effects for the	
Council Regulation (EC) No 423/2007 (repealed). (See end of Document for details)	
	-

	rotors/		
	assemblies		
	having		
	a mass		
	greater		
	than 3 kg;		
2.	Capable of		
 .	balancing		
	rotors/		
	assemblies		
	at speeds		
	greater		
	than 12		
2	500 rpm;		
3.	Capable of		
	correcting		
	unbalance		
	in two		
	planes or		
	more; and		
4.	Capable of		
	balancing		
	to a		
	residual		
	specific		
	unbalance		
	of 0,2 g		
	mm per		
	kg of rotor		
	mass;		
b. Indicator			
designed			
modified			
with mac			
specified			
above.	III a.		
Technical note:			
Indicator heads are			
sometimes known			
balancing instrume	entation.		
Remote manipulat	ors that can	2B225	
be used to provide			
actions in radioche			
separation operation	ons or		
hot cells, other that			
specified in 2B225			
either of the follow			
characteristics:	0		
a. A capabi	lity of		
penetrati			
	of hot cell		

	 wall (through the wall operation); or b. A capability of bridging over the top of a hot cell wall with a thickness of 0,3 m or more (over the wall operation). Technical note: Remote manipulators provide translation of human operator actions to a remote operating arm and terminal fixture. They may be of 'master/ slave' type or operated by joystick or keypad. 	
II.A2.005	Controlled atmosphere heat treatment furnaces, as follows: Furnaces capable of operation at temperatures above 400 °C.	2B226, 2B227
II.A2.006	Oxidation furnaces capable of operation at temperatures above 400 °C	2B226, 2B227
П.А2.007	'Pressure transducers', other than those defined in 2B230, capable of measuring absolute pressures at any point in the range 0 to 200 kPa and having both of the following characteristics: a. Pressure sensing elements made of or protected by 'Materials resistant to corrosion by UF_6 ', and b. Having either of the following characteristics: 1. A full scale of less than 200 kPa and an 'accuracy' of better than ± 1	2B230

	Status: Point in time view as at 24/06/2008 ation: There are currently no known outstan (EC) No 423/2007 (repealed). (See end of E	nding effects for the
	% of full scale; or 2. A full scale of 200 kPa or greater and an	
	'accuracy' of better than 2 kPa. Technical note: For the purposes of 2B30, 'accuracy' includes non- linearity, hysteresis and repeatability at ambient temperature.	
II.A2.008	Liquid-liquid contacting equipment (mixer-settlers, pulsed columns, centrifugal contactors); and liquid distributor, vapour distributor or liquid collectors designed for such equipment, where all surfaces that come in direct contact with the chemical(s) being processed are made from any of the following materials: 1. Alloys with more than 25 % nickel and 20 % chromium by weight; 2. Fluoropolymers; 3. Glass (including vitrified or enamelled coating or glass lining); 4. Graphite or 'carbon graphite'; 5. Nickel or alloys with more than 40 % nickel by weight; 6. Tantalum or tantalum alloys; 7. Titanium or zirconium alloys; or 9. Stainless steel. Technical note:	2B350.e

	'Carbon graphite' is a composition consisting of amorphous carbon and graphite, in which the graphite content is 8 % or more by weight.	
II.A2.009	Industrial equipment and components, other than those specified in 2B350.d, as follows: Heat exchangers or condensers with a heat transfer surface area greater than 0,05 m ² , and less than 30 m ² ; and tubes, plates, coils or blocks (cores) designed for such heat exchangers or condensers, where all surfaces that come in direct contact with the fluid(s) are made from any of the following materials: 1. Alloys with more than 25 % nickel and 20 % chromium by weight; 2. Fluoropolymers; 3. Glass (including vitrified or enamelled coatings or glass lining); 4. Graphite or 'carbon graphite'; 5. Nickel or alloys with more than 40 % nickel by weight; 6. Tantalum or tantalum alloys; 7. Titanium or zirconium alloys; 8. Zirconium or zirconium alloys; 9. Silicon carbide; 10. Titanium carbide; or 11. Stainless steel. Note: This item does not control vehicle radiators.	2B350.d
II.A2.010	Multiple-seal, and seal-less pumps, other than those specified in 2B350i, suitable for corrosive fluids, with	2B350.i

<i>Status:</i> Point in time view as at 24/06/2008.
Changes to legislation: There are currently no known outstanding effects for the
Council Regulation (EC) No 423/2007 (repealed). (See end of Document for details)

	manufacturer's specified maximum flow-rate greater than 0,6 m ³ /hour, or vacuum pumps with manufacturer's specified maximum flow- rate greater than 5 m ³ /hour (measured under standard temperature (273 K (0 °C)) and pressure (101,3 kPa) conditions); and casings (pump bodies), preformed casing liners, impellers, rotors or jet pump nozzles designed for such pumps, in which all surfaces that come in direct contact with the chemical(s) being processed are made from any of the following materials: 1. Stainless steel, 2. Aluminium alloy.	
П.А2.011	Centrifugal separators, capable of continuous separation without the propagation of aerosols and manufactured from: 1. Alloys with more than 25 % nickel and 20 % chromium by weight; 2. Fluoropolymers; 3. Glass (including vitrified or enamelled coating or glass lining); 4. Nickel or alloys with more than 40 % nickel by weight; 5. Tantalum or tantalum alloys; 6. Titanium or titanium alloys; or 7. Zirconium or zirconium alloys. Note: This item does not control centrifugal separators defined in item 2B352.c.	2B352.c
II.A2.012	Sintered metal filters made of nickel or nickel alloy with a nickel content of 40 % or more by weight.	2B352.d

Note: This item does not
control filters defined in item
2B352.d.

A3

ELECTRONICS

No	Description	Related item from Annex I to Regulation (EC) No 394/2006	
II.A3.001	 High voltage direct current power supplies having both of the following characteristics: a. Capable of continuously producing, over a time period of eight hours, 10 kV or greater, with output power of 5 kW or greater with or without sweeping; and b. Current or voltage stability better than 0,1 % over a time period of four hours. Note: This item does not control power supplies defined in items 0B001.j.5 and 3A227. 	3A227	
II.A3.002	Mass spectrometers, other than those specified in 3A233 or 0B002g, capable of measuring ions of 200 atomic mass units or greater and having a resolution of better than 2 parts in 200, 	3A233	

Document Generated: 2024-06-09	Status: Point	in time view o	us at 24/06/2008.	
Changes to legisla	tion: There a	re currently n	o known outstan	ding effects for the
Council Regulation (EC) No 423/.	2007 (repealed	d). (See end of L	ocument for details)
	c.		ionisation	
		-	ctrometers	
	1	(TIMS);		
	d.	Electron		
		bombardi		
		which ha	ctrometers	
		source ch		
		construct		
		from, line	ed with	
		or plated		
			s resistant	
		to corrosi	on by	
		UF ₆ ';		
	e.	Molecula		
			ctrometers	
		having ei the follow		
		character		
			A source	
			chamber	
			constructed	
			from,	
			lined with	
			or plated	
			with	
			stainless steel or	
			molybdenu	m
			and	11
			equipped	
			with a	
			cold trap	
			capable of	
			cooling to	
			193 K (-	
			80 °C) or	
			less; or A source	
			chamber	
			constructed	
			from,	
			lined with	
			or plated	
			with	
			'Materials	
			resistant to	
			corrosion	
	f.		by UF_6 ';	
	1.	equipped	ctrometers with a	
		microfluc		
			e designed	
			\mathcal{L}	1

Status: Point in time view as at 24/06/2008.

Changes to legislation: There are currently no known outstanding effects for the puncil *Pagulation* (EC) No. (23/2007 (rangeled)). (See and of Document for detail

Council Regulation (EC) No 423/2007 (repealed). (See end of Document for details)

for actinides or actinide fluorides.

A6

No **Related item from Annex** Description I to Regulation (EC) No 394/2006 II.A6.001 Yttrium aluminium garnet (YAG) rods II.A6.002 Infrared optics in the 6A003 wavelength range 9–17 µm and components therefor, including cadmium telluride (CdTe) components. Note: This item does not control cameras and components defined in item 6A003 II.A6.003 Wave front corrector systems 6A004.a, 6A005.e, 6A005.f for use with a laser beam having a diameter exceeding 4 mm, and specially designed components therefor, including control systems, phase front sensors and 'deformable mirrors' including bimorph mirrors. Note: This item does not control mirrors defined in 6A004.a, 6A005.e and 6A005.f II.A6.004 Argon ion 'lasers' having an 6A005.a.6, 6A205.a average output power equal to or greater than 5 W Note: This item does not control argon ion 'lasers' defined in items 0B001.g.5., 6A005 and 6A205.a II.A6.005 Semiconductor 'lasers' and 6A005.b components therefor, as follows: Individual a. semiconductor 'lasers' with an output power greater than 200

mW each, in

SENSORS AND LASERS

Status: Point in time view as at 24/06/2008.

	nges to legislation: There are currently no known outstand cil Regulation (EC) No 423/2007 (repealed). (See end of Do	
	quantities larger than 100; b. Semiconductor 'laser' arrays having an output power greater than 20 W. Notes:	
	1. Semiconductor 'lasers' are commonly called 'laser' diodes.	
	2. This item does not control 'lasers' defined in items 0B001.g.5, 0B001.h.6 and 6A005b.	
	3. This item does not control 'laser' diodes with a wavelength in the range 1 200–2 000 nm.	
II.A6.006	Tunable semiconductor 'lasers' and tunable semiconductor 'laser' arrays, of a wavelength between 9 μ m and 17 μ m, as well as array stacks of semiconductor 'lasers' containing at least one tunable semiconductor 'laser array' of such wavelength. Notes:	6A005.b
	1. Semiconductor 'lasers' are commonly called 'laser' diodes.	
	2. This item does not control semiconductor 'lasers' defined in items 0B001.h.6 and 6A005.b.	
II.A6.007	Solid state 'tunable' 'lasers' as follows, and specially	6A005.c.1

	designed components therefor: a. Titanium-sapphire lasers; b. Alexandrite lasers. Note: This item does not control titanium-sapphire and alexandrite lasers defined in items 0B001.g.5, 0B001.h.6 and 6A005.c.1	
II.A6.008	Neodymium-doped (other than glass) 'lasers', having an output wavelength exceeding 1 000 nm but not exceeding 1 100 nm and output energy exceeding 10 J per pulse. Note: This item does not control neodymium-doped (other than glass) 'lasers' defined in item 6A005.c.2.b	6A005.c.2
II.A6.009	Components of acousto- optics, as follows: a. Framing tubes and solid-state imaging devices having a recurrence frequency equal to or exceeding 1kHz; b. Recurrence frequency supplies; c. Pockels cells.	6A203.b.4.c
П.Аб.010	Radiation-hardened cameras, or lenses therefor, other than those specified in 6A203c, specially designed or rated as radiation hardened to withstand a total radiation dose greater than 50×10^3 Gy(silicon) (5×10^6 rad (silicon)) without operational degradation. Technical note: The term Gy(silicon) refers to the energy in Joules per kilogram absorbed by an unshielded silicon sample when exposed to ionising radiation.	6A203.c
II.A6.011	Tunable pulsed dye laser amplifiers and oscillators,	6A205.c

	Status: Point in time view as at 24/06/2008. Inges to legislation: There are currently no known outstanding effects for the cil Regulation (EC) No 423/2007 (repealed). (See end of Document for details)
Counc	having all of the following characteristics: 1. Operating at wavelengths between 300 nm
	 and 800 nm; 2. An average output power greater than 10 W but not exceeding 30 W; 3. A repetition rate greater than 1 kHz; and 4. Pulse width less than 100 ns. Notes:
	1. This item does not control single mode oscillators.
	2. This item does not control tunable pulsed dye laser amplifiers and oscillators defined in item 6A205.c, 0B001.g.5 and 6A005
I.A6.012	Pulsed carbon dioxide 'lasers' having all of the following characteristics:6A205.d1.Operating at wavelengths between 9 000 nm and 11 000 nm;6A205.d2.A repetition rate
	greater than 250 Hz; 3. An average output power greater than 100 W but not exceeding 500 W; and 4. Pulse width of less than 200 ns. Note: This item does not control pulsed carbon
	dioxide laser amplifiers and oscillators defined in item 6A205.d, 0B001.h.6 and 6A005d.

A7

NAVIGATION AND AVIONICS

No	Description	Related item from Annex I to Regulation (EC) No 394/2006
II.A7.001	Inertial systems and specially designed components, as follows:I.Inertial navigation systems which are certified for use on 'civil aircraft' by civil authorities of 	

	compone therefor:	
	1.	Navigation
	1.	error
		(free
		inertial)
		subsequent
		to
		normal
		alignment
		of
		0,8
		nautical
		mile
		per
		hour
		(nm/
		hr)
		'Circular
		Error
		Probable' (CEP)
		or
		less
		(better);
		or
	2.	Specified
		to
		function
		at
		linear
		acceleration
		levels
		exceeding
		10
		g;
b.	Hybrid	
	inertial	
	navigati	on
	systems	
	embedde	ed
	with	
	Global	
	Navigati	ion
	Satellite	
	Systems	(s)
	(GNSS)	
	or with	
	'Data-	
	Based	
	Reference	
	Navigati	ion' ('DBRN')
	System(s)
	for	

> attitude, guidance or control, subsequent to normal alignment, having an INS navigation position accuracy, after loss of GNSS or 'DBRN' for a period of up to four minutes, of less (better) than 10 metres 'Circular Error Probable' (CEP); Inertial Equipment for Azimuth, Heading, or North Pointing having any of the following characteristics, and specially designed components therefor: 1. Designed to have an Azimuth, Heading, or North Pointing accuracy equal

c.

of 1 msec, or greater. Note: The parameters of I.a. and I.b. are applicable with any of the following environmental conditions: 1. Input random vibration with an overall magnitude of 7,7 g rms in the first half hour and a total test		2.	to, or less (better) than 6 arc minutes RMS at 45 degrees latitude; or Designed to have a non- operating shock level of 900 g or greater at a duration
Note: The parameters of I.a. and I.b. are applicable with any of the following environmental conditions: 1. Input random vibration with an overall magnitude of 7,7 g rms in the first half hour and			1 msec,
parameters of I.a. and I.b. are applicable with any of the following environmental conditions: 1. Input random vibration with an overall magnitude of 7,7 g rms in the first half hour and	Note: Th	ie.	
1. Input random vibration with an overall magnitude of 7,7 g rms in the first half hour and	paramete I.a. and I applicab of the fo environn	ers of b. are le with an llowing nental	ıy
vibration with an overall magnitude of 7,7 g rms in the first half hour and		Input	
magnitude of 7,7 g rms in the first half hour and		vibration	1
rms in the first half hour and		magnitu	de
hour and		rms in th	
		hour and	l

> duration of one and one half hour per axis in each of the three perpendicular axes, when the random vibration meets the following: a. А constant power spectral density (PSD) value of 0,04 $g^2/$ Hz over а frequency interval of 15 to 1 000 Hz; and b. The P\$D attenuates with frequency from 0,04 g²/ Hz to 0,01 g²/ Hz over а frequency

<i>Status:</i> Point in time view as at 24/06/2008.
Changes to legislation: There are currently no known outstanding effects for the
Council Regulation (EC) No 423/2007 (repealed). (See end of Document for details)

	interval	
	from	
	1	
	000	
	to	
	2	
	000	
	Hz;	
2.	A roll	
	and yaw	
	rate of	
	equal to or	
	more than	
	+ 2,62	
	radian/s	
	(150 deg/	
	s); or	
3.	According	
	to national	
	standards	
	equivalent	
	to 1. or 2.	
	above.	
Technica	l notes:	
1	I h rafara	
1.	I.b. refers	
	to systems in which	
	an INS	
	and other	
	independent	
	navigation	
	aids are	
	built into a	
	single unit	
	(embedded)	
	in order	
	to achieve	
	improved	
	performance.	
	-	
2.	'Circular	
	Error	
	Probable' (CEP) –	-
	In a	
	circular	
	normal	
	distribution,	
	the radius	
	of the	
	circle	
	containing	
	50 %	
	•	

		of the individual measurements being
		made, or the
		radius of
		the circle
		within
		which there is
		a 50 %
		probability
		of being
		located.
Ι	I.	Theodolite systems
		incorporating
		inertial equipment specially designed
		for civil surveying
		purposes and
		designed to have an
		Azimuth, Heading,
		or North Pointing
		accuracy equal
		to, or less (better) than 6 arc minutes
		RMS at 45 degrees
		latitude, and
		specially designed
		components
		therefor.
	II.	Inertial or other
		equipment using accelerometers
		specified in 7A001
		or 7A101, where
		such accelerometers
		are specially
		designed and
		developed as MWD
		(Measurement
		While Drilling) sensors for use
		in downhole well
		services operations.

II.B. TECHNOLOGY

No	Description	Related item from Annex I to Regulation (EC) No
		394/2006

|--|

[^{F3}ANNEX III

Websites for information on the competent authorities referred to in Articles 3(4), 3(5), 5(3), 6, 8, 9, 10(1), 10(2), 13(1) and 17, and address for notifications to the European Commission BELGIUM

http://www.diplomatie.be/eusanctions BULGARIA

http://www.mfa.government.bg CZECH REPUBLIC

http://www.mfcr.cz/mezinarodnisankce DENMARK

http://www.um.dk/da/menu/Udenrigspolitik/FredSikkerhedOgInternationalRetsorden/ Sanktioner/ GERMANY

http://www.bmwi.de/BMWi/Navigation/Aussenwirtschaft/Aussenwirtschaftsrecht/ embargos.html ESTONIA

http://www.vm.ee/est/kat_622/ GREECE

http://www.ypex.gov.gr/www.mfa.gr/en-US/Policy/Multilateral+Diplomacy/International +Sanctions/ SPAIN

 $www.mae.es/es/Menuppal/Asuntos/Sanciones+Internacionales\\ FRANCE$

http://www.diplomatie.gouv.fr/autorites-sanctions/ IRELAND

http://www.dfa.ie/un_eu_restrictive_measures_ireland/competent_authorities ITALY

http://www.esteri.it/UE/deroghe.html CYPRUS

http://www.mfa.gov.cy/sanctions LATVIA

http://www.mfa.gov.lv/en/security/4539 LITHUANIA

http://www.urm.lt LUXEMBOURG

http://www.mae.lu/sanctions HUNGARY

http://www.kulugyminiszterium.hu/kum/hu/bal/Kulpolitikank/nemzetkozi_szankciok/MALTA

http://www.doi.gov.mt/EN/bodies/boards/sanctions_monitoring.asp NETHERLANDS

http://www.minbuza.nl/sancties AUSTRIA

http://www.bmeia.gv.at/view.php3?f_id=12750&LNG=en&version=POLAND

http://www.msz.gov.pl PORTUGAL

http://www.min-nestrangeiros.pt ROMANIA

http://www.mae.ro/index.php?unde=doc&id=32311&idlnk=1&cat=3 SLOVENIA

http://www.mzz.gov.si/si/zunanja_politika/mednarodna_varnost/omejevalni_ukrepi/SLOVAKIA

http://www.foreign.gov.sk FINLAND

http://formin.finland.fi/kvyhteistyo/pakotteet SWEDEN

http://www.ud.se/sanktioner UNITED KINGDOM

http://www.fco.gov.uk/competentauthorities

Address for notifications to the European Commission:

European Commission

DG External Relations

Directorate A Crisis Platform - Policy Coordination in Common Foreign and Security Policy

Unit A2 Crisis Response and Peace Building

CHAR 12/106

B-1049 Bruxelles/Brussel (Belgium)

E-mail: relex-sanctions@ec.europa.eu

Tel. (32-2) 295 55 85

Fax: (32-2) 299 08 73]

[^{F4}ANNEX IV

List of persons, entities and bodies referred to in Article 7(1)

Textual Amendments

F4 Substituted by Commission Regulation (EC) No 219/2008 of 11 March 2008 amending Council Regulation (EC) No 423/2007 concerning restrictive measures against Iran.

A.Legal persons, entities and bodies

- (1) Abzar Boresh Kaveh Co. (*alias* BK Co.). Date of UN designation: 3.3.2008. Other information: involved in the production of centrifuge components.
- (2) Ammunition and Metallurgy Industries Group (*alias* (a) AMIG, (b) Ammunition Industries Group). Date of UN designation: 24.3.2007. Other information: (a) AMIG controls 7th of Tir, (b) AMIG is owned and controlled by the Defence Industries Organisation (DIO).
- (3) Atomic Energy Organisation of Iran (AEOI). Date of UN designation: 23.12.2006. Other information: Involved in Iran's nuclear programme.
- (4) Bank Sepah and Bank Sepah International. Date of UN designation: 24.3.2007. Other information: Bank Sepah provides support for the Aerospace Industries Organisation (AIO) and subordinates, including Shahid Hemmat Industrial Group (SHIG) and Shahid Bagheri Industrial Group (SBIG).
- (5) Barzagani Tejarat Tavanmad Saccal companies. Date of UN designation: 3.3.2008. Other information: (a) subsidiary of Saccal System companies, (b) this company tried to purchase sensitive goods for an entity listed in resolution 1737 (2006).
- (6) Cruise Missile Industry Group (*alias* Naval Defence Missile Industry Group). Date of UN designation: 24.3.2007.
- (7) Defence Industries Organisation (DIO). Date of UN designation: 23.12.2006. Other information: (a) Overarching MODAFL-controlled entity, some of whose subordinates have been involved in the centrifuge programme making components, and in the missile programme, (b) Involved in Iran's nuclear programme.
- (8) Electro Sanam Company (*alias* (a) E. S. Co., (b) E. X. Co.). Date of UN designation: 3.3.2008. Other information: AIO front-company, involved in the ballistic missile programme.
- (9) Esfahan Nuclear Fuel Research and Production Centre (NFRPC) and Esfahan Nuclear Technology Centre (ENTC). Date of UN designation: 24.3.2007. Other information: They are parts of the Atomic Energy Organisation of Iran's (AEOI) Nuclear Fuel Production and Procurement Company.
- (10) Ettehad Technical Group. Date of UN designation: 3.3.2008. Other information: AIO front-company, involved in the ballistic missile programme.
- (11) Fajr Industrial Group. Date of UN designation: 23.12.2006. Other information: (a) Formerly Instrumentation Factory Plant, (b) Subordinate entity of AIO, (c) Involved in Iran's ballistic missile programme.

- (12) Farayand Technique. Date of UN designation: 23.12.2006. Other information: (a) Involved in Iran's nuclear programme (centrifuge programme), (b) Identified in IAEA reports.
- (13) Industrial Factories of Precision (IFP) Machinery (*alias* Instrumentation Factories Plant). Date of UN designation: 3.3.2008. Other information: used by AIO for some acquisition attempts.
- (14) Jabber Ibn Hayan. Date of EU designation: 24.4.2007 (UN: 3.3.2008). Other information: AEOI laboratory involved in fuel-cycle activities.
- (15) Joza Industrial Co. Date of UN designation: 3.3.2008. Other information: AIO frontcompany, involved in the ballistic missile programme.
- (16) Kala-Electric (*alias* Kalaye Electric). Date of UN designation: 23.12.2006. Other information: (a) Provider for PFEP Natanz, (b) Involved in Iran's nuclear programme.
- (17) Karaj Nuclear Research Centre. Date of UN designation: 24.3.2007. Other information: Part of AEOI's research division.
- (18) Kavoshyar Company. Date of UN designation: 24.3.2007. Other information: Subsidiary company of AEOI.
- (19) Khorasan Metallurgy Industries. Date of UN designation: 3.3.2008. Other information: (a) subsidiary of the Ammunition Industries Group (AMIG) which depends on DIO, (b) involved in the production of centrifuge components.
- Mesbah Energy Company. Date of UN designation: 23.12.2006. Other information:
 (a) Provider for A40 research reactor Arak, (b) Involved in Iran's nuclear programme.
- (21) Niru Battery Manufacturing Company. Date of UN designation: 3.3.2008. Other information: (a) subsidiary of the DIO, (b) its role is to manufacture power units for the Iranian military including missile systems.
- (22) Novin Energy Company (*alias* Pars Novin). Date of UN designation: 24.3.2007. Other information: It operates within AEOI.
- (23) Parchin Chemical Industries. Date of UN designation: 24.3.2007. Other information: Branch of DIO.
- (24) Pars Aviation Services Company. Date of UN designation: 24.3.2007. Other information: maintains aircraft.
- (25) Pars Trash Company. Date of UN designation: 23.12.2006. Other information: (a) Involved in Iran's nuclear programme (centrifuge programme), (b) Identified in IAEA reports.
- (26) Pishgam (Pioneer) Energy Industries. Date of UN designation: 3.3.2008. Other information: has participated in construction of the Uranium Conversion Facility at Esfahan.
- (27) Qods Aeronautics Industries. Date of UN designation: 24.3.2007. Other information: It produces unmanned aerial vehicles (UAVs), parachutes, paragliders, paramotors, etc.

- (28) Sanam Industrial Group. Date of UN designation: 24.3.2007. Other information: subordinate to AIO.
- (29) Safety Equipment Procurement (SEP). Date of UN designation: 3.3.2008. Other information: AIO front-company, involved in the ballistic missile programme.
- (30) 7th of Tir. Date of UN designation: 23.12.2006. Other information: (a) Subordinate of DIO, widely recognised as being directly involved in Iran's nuclear programme, (b) Involved in Iran's nuclear programme.
- (31) Shahid Bagheri Industrial Group (SBIG). Date of UN designation: 23.12.2006. Other information: (a) Subordinate entity of AIO, (b) Involved in Iran's ballistic missile programme.
- (32) Shahid Hemmat Industrial Group (SHIG). Date of UN designation: 23.12.2006. Other information: (a) subordinate entity of AIO, (b) Involved in Iran's ballistic missile programme.
- (33) Sho'a' Aviation. Date of UN designation: 24.3.2007. Other information: It produces microlights.
- (34) TAMAS Company. Date of EU designation: 24.4.2007 (UN: 3.3.2008). Other information: (a) involved in enrichment-related activities, (b) TAMAS is an overarching body, under which four subsidiaries have been established, including one for uranium extraction to concentration and another in charge of uranium processing, enrichment and waste.
- (35) Ya Mahdi Industries Group. Date of UN designation: 24.3.2007. Other information: subordinate to AIO.
- B. Natural persons
- (1) Fereidoun **Abbasi-Davani**. Date of UN designation: 24.3.2007. Other information: Senior Ministry of Defence and Armed Forces Logistics (MODAFL) scientist with links to the Institute of Applied Physics. Working closely with Mohsen Fakhrizadeh-Mahabadi.
- (2) Dawood **Agha-Jani**. Function: Head of the PFEP Natanz. Date of UN designation: 23.12.2006. Other information: Person involved in Iran's nuclear programme.
- (3) Ali Akbar Ahmadian. Title: Vice Admiral. Function: Chief of Iranian Revolutionary Guard Corps (IRGC) Joint Staff. Date of UN designation: 24.3.2007.
- (4) Amir Moayyed Alai. Date of EU designation: 24.4.2007 (UN: 3.3.2008). Other information: involved in managing the assembly and engineering of centrifuges.
- (5) Behman **Asgarpour**. Function: Operational Manager (Arak). Date of UN designation: 23.12.2006. Other information: Person involved in Iran's nuclear programme.
- (6) Mohammad Fedai Ashiani. Date of EU designation: 24.4.2007 (UN: 3.3.2008). Other information: involved in the production of ammonium uranyl carbonate and management of the Natanz enrichment complex.
- (7) Abbas Rezaee Ashtiani. Date of UN designation: 3.3.2008. Other information: a senior official at the AEOI Office of Exploration and Mining Affairs.

- (8) Bahmanyar Morteza **Bahmanyar**. Function: Head of Finance & Budget Dept, Aerospace Industries Organisation (AIO). Date of UN designation: 23.12.2006. Other information: Person involved in Iran's ballistic missile programme.
- (9) Haleh **Bakhtiar**. Date of EU designation: 24.4.2007 (UN: 3.3.2008). Other information: involved in the production of magnesium at a concentration of 99.9 %.
- (10) Morteza **Behzad**. Date of EU designation: 24.4.2007 (UN: 3.3.2008). Other information: involved in making centrifuge components.
- (11) Ahmad Vahid Dastjerdi. Function: Head of the Aerospace Industries Organisation (AIO). Date of UN designation: 23.12.2006. Other information: Person involved in Iran's ballistic missile programme.
- (12) Ahmad **Derakhshandeh**. Function: Chairman and Managing Director of Bank Sepah. Date of UN designation: 24.3.2007.
- (13) Mohammad **Eslami**. Title: Dr. Date of UN designation: 3.3.2008. Other information: Head of Defence Industries Training and Research Institute.
- (14) Reza-Gholi **Esmaeli**. Function: Head of Trade & International Affairs Dept, Aerospace Industries Organisation (AIO). Date of UN designation: 23.12.2006. Other information: Person involved in Iran's ballistic missile programme.
- (15) Mohsen **Fakhrizadeh-Mahabadi**. Date of UN designation: 24.3.2007. Other information: Senior MODAFL scientist and former head of the Physics Research Centre (PHRC).
- (16) Mohammad **Hejazi**. Title: Brigadier General. Function: Commander of Bassij resistance force. Date of UN designation: 24.3.2007.
- (17) Mohsen **Hojati**. Function: Head of Fajr Industrial Group. Date of UN designation: 24.3.2007.
- (18) Seyyed Hussein **Hosseini**. Date of EU designation: 24.4.2007 (UN: 3.3.2008). Other information: AEOI official involved in the heavy water research reactor project at Arak.
- (19) M. Javad Karimi Sabet. Date of EU designation: 24.4.2007 (UN: 3.3.2008). Other information: Head of Novin Energy Company, which is designated under resolution 1747 (2007).
- (20) Mehrdada Akhlaghi **Ketabachi**. Function: Head of Shahid Bagheri Industrial Group (SBIG). Date of UN designation: 24.3.2007.
- (21) Ali Hajinia Leilabadi. Function: Director General of Mesbah Energy Company. Date of UN designation: 23.12.2006. Other information: Person involved in Iran's nuclear programme.
- (22) Naser **Maleki**. Function: Head of Shahid Hemmat Industrial Group (SHIG). Date of UN designation: 24.3.2007. Other information: Naser Maleki is also a MODAFL official overseeing work on the Shahab-3 ballistic missile programme. The Shahab-3 is Iran's long-range ballistic missile currently in service.
- (23) Hamid-Reza **Mohajerani**. Date of EU designation: 24.4.2007 (UN: 3.3.2008). Other information: involved in production management at the Uranium Conversion Facility (UCF) at Esfahan.

- (24) Jafar **Mohammadi**. Function: Technical Adviser to the Atomic Energy Organisation of Iran (AEOI) (in charge of managing the production of valves for centrifuges). Date of UN designation: 23.12.2006. Other information: Person involved in Iran's nuclear programme.
- (25) Ehsan **Monajemi**. Function: Construction Project Manager, Natanz. Date of UN designation: 23.12.2006. Other information: Person involved in Iran's nuclear programme.
- (26) Mohammad Reza **Naqdi**. Title: Brigadier General. Date of UN designation: 3.3.2008. Other information: former Deputy Chief of Armed Forces General Staff for Logistics and Industrial Research/Head of State Anti-Smuggling Headquarters, engaged in efforts to get round the sanctions imposed by resolutions 1737 (2006) and 1747 (2007).
- (27) Houshang **Nobari**. Date of EU designation: 24.4.2007 (UN: 3.3.2008). Other information: involved in the management of the Natanz enrichment complex.
- (28) Mohammad Mehdi Nejad **Nouri**. Title: Lt Gen. Function: Rector of Malek Ashtar University of Defence Technology. Date of UN designation: 23.12.2006. Other information: The chemistry department of Ashtar University of Defence Technology is affiliated to MODALF and has conducted experiments on beryllium. Person involved in Iran's nuclear programme.
- (29) Mohammad **Qannadi**. Function: AEOI Vice President for Research & Development. Date of UN designation: 23.12.2006. Other information: Person involved in Iran's nuclear programme.
- (30) Amir **Rahimi**. Function: Head of Esfahan Nuclear Fuel Research and Production Center. Date of UN designation: 24.3.2007. Other information: Esfahan Nuclear Fuel Research and Production Center is part of the AEOI's Nuclear Fuel Production and Procurement Company, which is involved in enrichment-related activities.
- (31) Abbas **Rashidi**. Date of EU designation: 24.4.2007 (UN: 3.3.2008). Other information: involved in enrichment work at Natanz.
- (32) Morteza **Rezaie**. Title: Brigadier General. Function: Deputy Commander of IRGC. Date of UN designation: 24.3.2007.
- (33) Morteza **Safari**. Title: Rear Admiral. Function: Commander of IRGC Navy. Date of UN designation: 24.3.2007.
- (34) Yahya Rahim **Safavi**. Title: Maj Gen. Function: Commander, IRGC (Pasdaran). Date of UN designation: 23.12.2006. Other information: Person involved in both Iran's nuclear and ballistic missile programmes.
- (35) Seyed Jaber **Safdari**. Date of UN designation: 24.3.2007. Other information: Manager of the Natanz Enrichment Facilities.
- (36) Hosein **Salimi**. Title: General. Function: Commander of the Air Force, IRGC (Pasdaran). Date of UN designation: 23.12.2006. Other information: Person involved in Iran's ballistic missile programme.
- (37) Qasem **Soleimani**. Title: Brigadier General. Function: Commander of Qods force. Date of UN designation: 24.3.2007.
- (38) Ghasem **Soleymani**. Date of UN designation: 3.3.2008. Other information: Director of Uranium Mining Operations at the Saghand Uranium Mine.

- (39) Mohammad Reza **Zahedi**. Title: Brigadier General. Function: Commander of IRGC Ground Forces. Date of UN designation: 24.3.2007.
- (40) General **Zolqadr**. Function: Deputy Interior Minister for Security Affairs, IRGC officer. Date of UN designation: 24.3.2007.]

[^{F5}ANNEX V

Textu	al Amendments
F5	Substituted by Council Decision of 23 June 2008 implementing Article 7(2) of Regulation (EC) No
	423/2007 concerning restrictive measures against Iran (2008/475/EC).

A.

	Name	Identifying information	Reasons	Date of listing
1.	Reza AGHAZADEH	DoB: 15.3.1949 Passport number: S4409483 valid 26.4.2000 – 27.4.2010 Issued: Tehran, Diplomatic passport number: D9001950, issued on 22.1.2008 valid until 21.1.2013, Place of birth: Khoy	Head of the Atomic Energy Organisation of Iran (AEOI). The AEOI oversees Iran's nuclear programme and is designated under UNSCR 1737 (2006).	24.4.2007
2.	IRGC Brigadier- General Javad DARVISH- VAND		MODAFL Deputy for Inspection. Responsible for all MODAFL facilities and installations	24.6.2008
3.	IRGC Brigadier- General Seyyed Mahdi FARAHI		Managing Director of the Defence Industries Organisation (DIO) which is designated under	24.6.2008

NATURAL PERSONS

			UNSCR 1737 (2006)	
4.	Dr Hoseyn (Hossein) FAQIHIAN	Address of NFPC: AEOI- NFPD, P.O. Box: 11365-8486, Tehran/Iran	Deputy and Director-General of the Nuclear Fuel Production and Procurement Company (NFPC), part of the AEOI. The AEOI oversees Iran's nuclear programme and is designated under UNSCR 1737 (2006). The NFPC involved in enrichment- related activities that Iran is required by the IAEA Board and Security Council to suspend.	24.4.2007
5.	Engineer Mojtaba HAERI		MADAFL Deputy for Industry. Supervisory role over AIO and DIO	24.6.2008
6.	IRGC Brigadier- General Ali HOSEYNITASH		Head of the General Department of the Supreme National Security Council and involved in formulating policy on the nuclear issue	24.6.2008
7.	Mohammad Ali JAFARI, IRGC		Occupe un poste de commandement au sein des IRGC	24.6.2008
8.	Mahmood JANNATIAN		Deputy Head of the Atomic Energy	24.6.2008

			Organisation of Iran	
9.	Said Esmail KHALILIPOUR	DoB: 24.11.1945, PoB: Langroud	Deputy Head of AEOI. The AEOI oversees Iran's nuclear programme and is designated under UNSCR 1737 (2006).	24.4.2007
10.	Ali Reza KHANCHI	Address of NRC: AEOI- NRC P.O. Box: 11365-8486 Tehran/Iran; Fax: (+9821) 8021412	Head of AEOI's Tehran Nuclear Research Centre. The IAEA is continuing to seek clarification from Iran about plutonium separation experiments carried out at the TNRC, including about the presence of HEU particles in environmental samples taken at the Karaj Waste Storage Facility where containers used to store depleted uranium targets used in those experiments are located. The AEOI oversees Iran's nuclear programme and is designated under UNSCR 1737 (2006).	24.4.2007
11.	Ebrahim MAHMUDZADE	Η	Managing Director of Iran Electronic Industries	24.6.2008
12.	Brigadier- General Beik MOHAMMADLU	J	MODAFL Deputy for Supplies and Logistics	24.6.2008

13.	Anis NACCACHE		Administrateur des Barzagani Tejarat Tavanmad Saccal companies; sa société a tenté d'acquérir des biens sensibles, au bénéfice d'entités listées au titre de la résolution 1737	24.6.2008
14.	Brigadier- General Mohammad NADERI		Head of Aerospace Industries Organisation (AIO), AIO a participé à des programmes sensibles iraniens	24.6.2008
15.	IRGC Brigadier- General Mostafa Mohammad NAJJAR		Minister of MODAFL, responsable de l'ensemble des programmes militaires, y compris des programmes de missiles balistiques.	24.6.2008
16.	Dr Javad RAHIQI	DoB: 21.4.1954, PoB: Mashad	Head of AEOI's Esfahan Nuclear Technology Centre. This oversees the uranium conversion plant at Esfahan. Iran is required by the IAEA Board and the Security Council to suspend all enrichment- related activities. This includes all uranium conversion work. AEOI oversees	24.4.2007

		Iran's nuclear programme and is designated under UNSCR 1737 (2006).	
17.	Rear Admiral Mohammad SHAFI'I RUDSARI	MODAFL Deputy for Co- ordination	24.6.2008
18.	IRGC Brigadier- General Ali SHAMSHIRI	MODAFL Deputy for Counter- Intelligence, responsible for security of MODAFL personnel and Installations	24.6.2008
19.	Abdollah SOLAT SANA	Managing Director of the Uranium Conversion Facility (UCF) in Esfahan. This is the facility that produces the feed material (UF6) for the enrichment facilities at Natanz. On 27 August 2006, Solat Sana received a special award from President Ahmadinejad for his role.	24.4.2007
20.	IRGC Brigadier- General Ahmad VAHIDI	Deputy Head of MODAFL	24.6.2008

В.

LEGAL PERSONS, ENTITIES AND BODIES

	Name	Identifying information	Reasons	Date of listing
1.	Aerospace Industries	AIO, 28 Shian 5, Lavizan, Tehran		24.4.2007

	Organisa AIO	ation,		of missiles, including Shahid Hemmat Industrial Group, Shahid Bagheri Industrial Group and Fajr Industrial Group, which were all designated under UNSCR 1737 (2006). The head of AIO and two other senior officials were also designated under UNSCR 1737 (2006)	
2.	Armame Industrie		Pasdaran Av., P.O. Box 19585/777, Tehran	A subsidiary of the DIO (Defence Industries Organisation).	24.4.2007
3.	Armed F Geograp Organisa	hical		Assessed to provide geospatial data for the Ballistic Missile programme	24.6.2008
4.	Bank Me Melli Ba and all b and subs including	nk Iran ranches idiaries	Ferdowsi Avenue, P.O. Box 11365-171, Tehran	Providing or attempting to provide financial support for companies	24.6.2008
	(a)	Melli Bank plc	London Wall, 11th floor, London EC2Y 5EA, United Kingdom	which are involved in or procure goods for Iran's nuclear and missile programmes	
	(b)	Bank Melli Iran Zao	Number 9/1, Ulitsa Mashkova, Moscow, 130064, Russia	(AIO, SHIG, SBIG, AEOI, Novin Energy Company, Mesbah Energy Company, Kalaye Electric Company and DIO). Bank Melli serves as a facilitator for	

			Iran's sensitive activities. It has facilitated numerous purchases of sensitive materials for Iran's nuclear and missile programmes. It has provided a range of financial services on behalf of entities linked to Iran's nuclear and missile industries, including opening letters of credit and maintaining accounts. Many of the above companies have been designated by UNSCRs 1737 and 1747.	
5.	Defence Technology and Science Research Centre (DTSRC) – also known as the Educational Research Institute/ Moassese Amozeh Va Tahgiaghati (ERI/MAVT Co.)	Pasdaran Av., P.O. Box 19585/777, Tehran	Responsible for R&D. A subsidiary of the DIO. The DTSRC handles much of the procurement for the DIO.	24.4.2007
6.	Iran Electronic Industries	P.O. Box 18575-365, Tehran, Iran	Wholly-owned subsidiary of MODAFL (and therefore a sister- organisation to AIO, AvIO and DIO). Its role is to manufacture	24.6.2008

Status: Point in time view as at 24/06/2008.

			electronic components for Iranian weapons systems.	
7.	IRGC Air Force		Operates Iran's inventory of short and medium range ballistic missiles. The head of the IRGC air force was designated by UNSCR 1737.	24.6.2008
8.	Khatem- ol Anbiya Construction Organisation	Number 221, North Falamak- Zarafshan Intersection, 4th Phase, Shahkrak- E-Ghods, Tehran 14678, Iran	IRGC-owned group of companies. Uses IRGC engineering resources for construction acting as prime contractor on major projects including tunnelling, assessed to support the Iranian ballistic missile and nuclear programmes.	24.6.2008
9.	Malek Ashtar University		Liée au Ministère de la Défense, a crée en 2003 une formation sur les missiles, en étroite collaboration avec l'AIO	24.6.2008
10.	Marine Industries	Pasdaran Av., P.O. Box 19585/777, Tehran	A subsidiary of the DIO.	24.4.2007
11.	Mechanic Industries Group		A participé à la production de composants pour le programme balistique	24.6.2008

12.	Ministry of Defence and Armed Forces Logistics (MODAFL)	West side of Dabestan Street, Abbas Abad District, Tehran	Responsible for Iran's defence research, development and manufacturing programmes, including support to missile and nuclear programmes	24.6.2008
13.	Ministry of Defence Logistics Export (MODLEX)	P.O. Box 16315-189, Tehran, Iran	It is the export arm of MODAFL, and the agency used for exporting finished weapons in state-to-state transactions. Under UNSCR 1747 (2007) MODLEX should not be trading.	24.6.2008
14.	3M Mizan Machinery Manufacturing		Société écran de l'AIO, participant à des acquisitions dans le domaine balistique.	24.6.2008
15.	Nuclear Fuel Production and Procurement Company (NFPC)	AEOI-NFPD, P.O. Box: 11365-8486, Tehran/Iran	Nuclear Fuel Production Division (NFPD) of AEOI is research and development in the field of nuclear fuel cycle including: uranium exploration, mining, milling, conversion and nuclear waste management. The NFPC is the successor to the NFPD, the subsidiary company under	24.4.2007

<i>Status:</i> Point in time view as at 24/06/2008.	
Changes to legislation: There are currently no known outstanding effects for the	
Council Regulation (EC) No 423/2007 (repealed). (See end of Document for details)	
	-

			the AEOI that runs research and development in the nuclear fuel cycle including conversion and enrichment	
16.	Parchin Chemical Industries		A travaillé sur des techniques de propulsion pour le programme balistique iranien	24.6.2008
17.	Special Industries Group	Pasdaran Av., P.O. Box 19585/777, Tehran	A subsidiary of the DIO.	24.4.2007
18.	State Purchasing Organisation (SPO)		The SPO appears to facilitate the import of whole weapons. It appears to be a subsidiary of MODAFL	24.6.2008]

- (1) OJ L 61, 28.2.2007, p. 49.
- (2) OJ L 159, 30.6.2000, p. 1. Regulation as last amended by Regulation (EC) No 394/2006 (OJ L 74, 13.3.2006, p. 1).
- (**3**) [^{F1}OJ L 88, 29.3.2007, p. 58.]
- (4) OJ L 82, 22.3.1997, p. 1. Regulation as last amended by Regulation (EC) No 807/2003 (OJ L 122, 16.5.2003, p. 36).
- (5) [^{F3}OJ L 278, 22.10.2007, p. 1.
- (6) OJ L 88, 29.3.2007, p. 58.
- (7) OJ L 61, 28.2.2007, p. 49. Common Position as last amended by Common Position 2007/246/CFSP (OJ L 106, 24.4.2007, p. 67).]

Textual Amendments

- **F1** Inserted by Council Regulation (EC) No 618/2007 of 5 June 2007 amending Regulation (EC) No 423/2007 concerning restrictive measures against Iran.
- **F3** Substituted by Commission Regulation (EC) No 116/2008 of 28 January 2008 amending Council Regulation (EC) No 423/2007 concerning restrictive measures against Iran.

Status:

Point in time view as at 24/06/2008.

Changes to legislation:

There are currently no known outstanding effects for the Council Regulation (EC) No 423/2007 (repealed).