[F1ANNEX IIIA U.K. VERIFYING REAL DRIVING EMISSIONS

Appendix 5

Verification of trip dynamic conditions with method 1 (Moving Averaging Window) U.K.

7. NUMERICAL EXAMPLES U.K.
7.1. Averaging window calculations U.K.
Table 1

Main calculation settings

[g] 610
Direction for averaging window calculation Forward
Acquisition frequency [Hz] 1

Figure 6 shows how averaging windows are defined on the basis of data recorded during an on-road test performed with PEMS. For sake of clarity, only the first 1 200 seconds of the trip are shown hereafter.

Seconds 0 up to 43 as well as seconds 81 to 86 are excluded due to operation under zero vehicle speed.

The first averaging window starts at t 1,1 = 0s and ends at second t 2,1 = 524 s (Table 3). The window average vehicle speed, integrated CO and NO x masses [g] emitted and corresponding to the valid data over the first averaging window are listed in Table 4.

Figure 6

Instantaneous CO 2 emissions recorded during on-road test with PEMS as a function of time. Rectangular frames indicate the duration of the j th window. Data series named Valid=100 / Invalid=0 shows second by second data to be excluded from analysis

7.2. Evaluation of windows U.K.
Table 2

Calculation settings for the CO 2 characteristic curve

CO 2 Low Speed WLTC (P 1 ) [g/km] 154
CO 2 High Speed WLTC (P 2 ) [g/km] 96
CO 2 Extra-High Speed WLTC (P 3 ) [g/km] 120
Reference Point
P 1
P 2
P 3

The definition of the CO 2 characteristic curve is as follows:

For the section ( P 1 , P 2 ):

with

and: b 1 = 154 – (– 1,543) × 19.0 = 154 + 29,317 = 183,317

For the section ( P 2 , P 3 ):

with

and: b 2 = 96 – 0,672 × 56,6 = 96 – 38,035 = 57,965

Examples of calculation for the weighing factors and the window categorisation as urban, rural or motorway are:

For window #45:

For the characteristic curve:

Verification of:

124,498 × (1 – 25/100) ≤ 122,62 ≤ 124,498 × (1 + 25/100)

93,373 ≤ 122,62 ≤ 155,622

Leads to: w 45 = 1

For window #556:

For the characteristic curve:

Verification of:

105,982 × (1 – 50/100) ≤ 72,15 ≤ 105,982 × (1 + 25/100)

52,991 ≤ 72,15 ≤ 79,487

Leads to:

w 556 = k 21 h 556 + k 22 = 0,04 · (– 31,922) + 2 = 0,723

with k 21 = 1/( tol 2 tol 1 ) = 1/(50 – 25) = 0,04

and k 22 = k 21 = tol 2 /( tol 2 tol 1 ) = 50/(50 – 25) = 2

Table 3

Emissions numerical data

Window [#] t 1, j [s] t 2, j – Δ t [s] t 2, j [s] [g] [g]
1 0 523 524 609,06 610,22
2 1 523 524 609,06 610,22
43 42 523 524 609,06 610,22
44 43 523 524 609,06 610,22
45 44 523 524 609,06 610,22
46 45 524 525 609,68 610,86
47 46 524 525 609,17 610,34
100 99 563 564 609,69 612,74
200 199 686 687 608,44 610,01
474 473 1 024 1 025 609,84 610,60
475 474 1 029 1 030 609,80 610,49
556 555 1 173 1 174 609,96 610,59
557 556 1 174 1 175 609,09 610,08
558 557 1 176 1 177 609,09 610,59
559 558 1 180 1 181 609,79 611,23
Table 4

Window numerical data

Window [#] t 1,j [s] t 2,j [s] d j [km] [km/h] M CO2,j [g] M CO,j [g] M NOx,j [g] M CO2,d,j [g/km] M CO,d,j [g/km] M NOx,d,j [g/km] M CO2,d,cc ( ) [g/km] Window (U/R/M) h j [%] w j [%]
1 0 524 4,98 38,12 610,22 2,25 3,51 122,61 0,45 0,71 124,51 URBAN – 1,53 1,00
2 1 524 4,98 38,12 610,22 2,25 3,51 122,61 0,45 0,71 124,51 URBAN – 1,53 1,00
43 42 524 4,98 38,12 610,22 2,25 3,51 122,61 0,45 0,71 124,51 URBAN – 1,53 1,00
44 43 524 4,98 38,12 610,22 2,25 3,51 122,61 0,45 0,71 124,51 URBAN – 1,53 1,00
45 44 524 4,98 38,12 610,22 2,25 3,51 122,62 0,45 0,71 124,51 URBAN – 1,51 1,00
46 45 525 4,99 38,25 610,86 2,25 3,52 122,36 0,45 0,71 124,30 URBAN – 1,57 1,00
100 99 564 5,25 41,23 612,74 2,00 3,68 116,77 0,38 0,70 119,70 URBAN – 2,45 1,00
200 199 687 6,17 46,32 610,01 2,07 4,32 98,93 0,34 0,70 111,85 RURAL – 11,55 1,00
474 473 1 025 7,82 52,00 610,60 2,05 4,82 78,11 0,26 0,62 103,10 RURAL – 24,24 1,00
475 474 1 030 7,87 51,98 610,49 2,06 4,82 77,57 0,26 0,61 103,13 RURAL – 24,79 1,00
556 555 1 174 8,46 50,12 610,59 2,23 4,98 72,15 0,26 0,59 105,99 RURAL – 31,93 0,72
557 556 1 175 8,46 50,12 610,08 2,23 4,98 72,10 0,26 0,59 106,00 RURAL – 31,98 0,72
558 557 1 177 8,46 50,07 610,59 2,23 4,98 72,13 0,26 0,59 106,08 RURAL – 32,00 0,72
559 558 1 181 8,48 49,93 611,23 2,23 5,00 72,06 0,26 0,59 106,28 RURAL – 32,20 0,71
7.3. Urban, rural and motorway windows — Trip completeness U.K.

In this numerical example, the trip consists of 7 036 averaging windows. Table 5 lists the number of windows classified in urban, rural and motorway according to their average vehicle speed and divided in regions with respect to their distance to the CO 2 characteristic curve. The trip is complete since it comprises at least 15 % of urban, rural and motorway windows out of the total number of windows. In addition the trip is characterised as normal since at least 50 % of the urban, rural and motorway windows are within the primary tolerances defined for the characteristic curve.

Table 5

Verification of trip completeness and normality

Driving Conditions Numbers Percentage of windows
All Windows
Urban 1 909 1 909 / 7 036 × 100 = 27,1 > 15
Rural 2 011 2 011 / 7 036 × 100 = 28,6 > 15
Motorway 3 116 3 116 / 7 036 × 100 = 44,3 > 15
Total 1 909 + 2 011 + 3 116 = 7 036
Normal Windows
Urban 1 514 1 514 / 1 909 × 100 = 79,3 > 50
Rural 1 395 1 395 / 2 011 × 100 = 69,4 > 50
Motorway 2 708 2 708 / 3 116 × 100 = 86,9 > 50
Total 1 514 + 1 395 + 2 708 = 5 617 ]