- Latest available (Revised)
- Point in Time (27/01/2009)
- Original (As adopted by EU)
Commission Regulation (EC) No 152/2009 of 27 January 2009 laying down the methods of sampling and analysis for the official control of feed (Text with EEA relevance)
When the UK left the EU, legislation.gov.uk published EU legislation that had been published by the EU up to IP completion day (31 December 2020 11.00 p.m.). On legislation.gov.uk, these items of legislation are kept up-to-date with any amendments made by the UK since then.
Legislation.gov.uk publishes the UK version. EUR-Lex publishes the EU version. The EU Exit Web Archive holds a snapshot of EUR-Lex’s version from IP completion day (31 December 2020 11.00 p.m.).
Point in time view as at 27/01/2009.
There are currently no known outstanding effects for the Commission Regulation (EC) No 152/2009, ANNEX VIII.
Revised legislation carried on this site may not be fully up to date. At the current time any known changes or effects made by subsequent legislation have been applied to the text of the legislation you are viewing by the editorial team. Please see ‘Frequently Asked Questions’ for details regarding the timescales for which new effects are identified and recorded on this site.
More sensitive methods of analysis than the methods of analysis mentioned in this Annex can be used to detect the illegal presence of no longer authorised additives in feed.
The methods of analysis mentioned in this Annex shall be used for confirmatory purposes.
7-benzyloxy-6-butyl-3-methoxycarbonyl-4-quinolone
This method makes it possible to determine the level of methyl benzoquate in feed. The limit of quantification is 1 mg/kg.
Methyl benzoquate is extracted from the sample with methanolic methanesulfonic acid solution. The extract is purified with dichloromethane, by ion-exchange chromatography and then again with dichloromethane. The methyl benzoquate content is determined by reversed-phase high-performance liquid chromatography (HPLC) with an UV detector.
Mixture of methanol (3.2) and water (equivalent to HPLC grade) 75 + 25 (v + v).
Filter through a 0,22 μm filter (4.5) and degas the solution (e.g. by ultrasonification for 10 minutes).
Dilute 20,0 ml methanesulfonic acid to 1 000 ml with methanol (3.2).
Dilute 100 ml hydrochloric acid (ρ201,18 g/ml) to 1 000 ml with water.
The resin is pretreated before use. Slurry 100 g resin with 500 ml hydrochloric acid solution (3.5) and heat on a hot plate to boiling, stirring continuously. Allow to cool and decant off the acid. Filter through a filter paper under vacuum. Wash the resin twice with 500 ml portions of water and then with 250 ml of methanol (3.2). Rinse the resin with a further 250 ml portion of methanol and dry by passing air through the filter cake. Store the dried resin in a stoppered bottle.
Weigh to the nearest 0,1 mg, 50 mg of standard substance (3.7), dissolve in methanesulfonic acid solution (3.4) in a 100 ml graduated flask, make up to the mark and mix.
Transfer 5,0 ml of methyl benzoquate stock standard solution (3.7.1) into a 50 ml graduated flask, make up to the mark with methanol (3.2) and mix.
Transfer 1,0, 2,0, 3,0, 4,0 and 5,0 ml of methyl benzoquate intermediate standard solution (3.7.2) into a series of 25 ml graduated flasks. Make up to the mark with the mobile phase (3.3) and mix. These solutions have concentrations of 2,0, 4,0, 6,0, 8,0 and 10,0 μg/ml methyl benzoquate respectively. These solutions must be freshly prepared before use.
Note for the purpose of this method, the blank feed shall be similar in type to that of the sample and on analysis methyl benzoquate must not be detected.
Weigh to the nearest 0,01 g, approximately 20 g of the prepared sample and transfer to a 250 ml conical flask. Add 100,0 ml of methanesulfonic acid solution (3.4) and shake mechanically (4.1) for 30 minutes. Filter the solution through a filter paper and retain the filtrate for the liquid-liquid partition step (5.3).
Transfer into a 500 ml separating funnel containing 100 ml of hydrochloric acid solution (3.5), 25,0 ml of the filtrate obtained in (5.2). Add 100 ml dichloromethane (3.1) to the funnel and shake for one minute. Allow the layers to separate and run off the lower (dichloromethane) layer into a 500 ml round-bottomed flask. Repeat the extraction of the aqueous phase with two further 40-ml portions of dichloromethane and combine these with the first extract in the round-bottomed flask. Evaporate the dichloromethane extract down to dryness on the rotary evaporator (4.2) operating under reduced pressure at 40 oC. Dissolve the residue in 20 to 25 ml methanol (3.2), stopper the flask and retain the whole of the extract for ion-exchange chromatography (5.4).
Insert a plug of glass wool into the lower end of a glass column (4.3). Prepare a slurry of 5,0 g of the treated cation-exchange resin (3.6) with 50 ml of hydrochloric acid (3.5), pour into the glass column and allow to settle. Run out the excess acid to just above the resin surface and wash the column with water until the effluent is neutral to litmus. Transfer 50 ml methanol (3.2) onto the column and allow to drain down to the resin surface.
By means of a pipette, carefully transfer the extract obtained in (5.3) onto the column. Rinse the round-bottomed flask with two portions of 5 to 10 ml methanol (3.2) and transfer these washings to the column. Run the extract down to the resin surface and wash the column with 50 ml methanol, ensuring that the flow rate does not exceed 5 ml per minute. Discard the effluent. Elute the methyl benzoquate from the column using 150 ml of methanesulfonic acid solution (3.4) and collect the column eluate in a 250 ml conical flask.
Transfer the eluate obtained in (5.4.2) into a 1 litre separating funnel. Rinse the conical flask with 5 to 10 ml methanol (3.2) and combine the washings with the contents of the separating funnel. Add 300 ml of hydrochloric acid solution (3.5) and 130 ml of dichloromethane (3.1). Shake for 1 minute and allow the phases to separate. Run off the lower (dichloromethane) layer into a 500 ml round bottomed flask. Repeat the extraction of the aqueous phase with two further 70 ml portions of dichloromethane and combine these extracts with the first in the round-bottomed flask.
Evaporate the dichloromethane extract down to dryness on the rotary evaporator (4.2) operating under reduced pressure at 40 oC. Dissolve the residue in the flask with approximately 5 ml of methanol (3.2) and transfer this solution quantitatively to a 10 ml graduated flask. Rinse the round-bottomed flask with a further two portions of 1 to 2 ml of methanol and transfer these to the graduated flask. Make up to the mark with methanol and mix. An aliquot portion is filtered through a membrane filter (4.6). Reserve this solution for HPLC-determination (5.6).
The following conditions are offered for guidance, other conditions may be used provided that they give equivalent results:
liquid chromatographic column (4.4.1),
HPLC mobile phase: methanol-water mixture (3.3),
flow rate: 1 to 1,5 ml/minute,
detection wavelength: 265 nm,
Injection volume: 20 to 50 μl.
Check the stability of the chromatographic system, injecting the calibration solution (3.7.3) containing 4 μg/ml several times, until constant peak heights or areas and retention times are achieved.
Inject each calibration solution (3.7.3) several times and measure the peak heights (areas) for each concentration. Plot a calibration graph using the mean peak heights or areas of the calibration solutions as the ordinates and the corresponding concentrations in μg/ml as the abscissae.
Inject the sample extract (5.5) several times, using the same volume as taken for the calibration solutions and determine the mean peak height (area) of the methyl benzoquate peaks.
Determine the concentration of the sample solution in μg/ml from the mean height (area) of the methyl benzoquate peaks of the sample solution by reference to the calibration graph (5.6.2).
The content of methyl benzoquate w (mg/kg) of the sample is given by the following formula:
in which:
=
methyl benzoquate concentration of the sample solution in μg/ml,
=
weight of the test portion in grams.
The identity of the analyte can be confirmed by co-chromatography, or by using a diode-array detector by which the spectra of the sample extract and the calibration solution (3.7.3) containing 10 μg/ml are compared.
A sample extract is fortified by addition of an appropriate amount of the intermediate standard solution (3.7.2). The amount of added methyl benzoquate must be similar to the estimated amount of methyl benzoquate in the sample extract.
Only the height of the methyl-benzoquate peak shall be enhanced after taking into account both the amount added and the dilution of the extract. The peak width, at half of its maximum height, must be within approximately 10 % of the original width.
The results are evaluated according to the following criteria:
the wavelength of maximum absorption of the sample and of the standard spectra recorded at the peak apex on the chromatogram must be the same within a margin determined by the resolving power of the detection system. For diode-array detection, this is typically within approximately 2 nm;
between 220 and 350 nm, the sample and standard spectra recorded at the peak apex on the chromatogram must not be different for those parts of the spectrum within the range 10 % to 100 % of relative absorbance. This criterion is met when the same maxima are present and at no observed point the deviation between the two spectra exceeds 15 % of the absorbance of the standard analyte;
between 220 and 350 nm, the spectra of the upslope, apex and downslope of the peak produced by the sample extract must not be different from each other for those parts of the spectrum within the range 10 % to 100 % of relative absorbance. This criterion is met when the same maxima are present and when at no observed points the deviation between the spectra does not exceed 15 % of the absorbance of the spectrum of the apex.
If one of these criteria is not met the presence of the analyte has not been confirmed.
The difference between the results of two parallel determinations carried out on the same sample must not exceed: 10 % relative to the higher result for methyl benzoquate contents between 4 and 20 mg/kg.
For a fortified blank sample the recovery shall be at least 90 %.
Five samples were analysed by 10 laboratories. Duplicate analyses were performed on each sample.
Blank | Meal 1 | Pellet 1 | Meal 2 | Pellet2 | |
---|---|---|---|---|---|
Mean [mg/kg] | ND | 4,5 | 4,5 | 8,9 | 8,7 |
sr [mg/kg] | — | 0,3 | 0,2 | 0,6 | 0,5 |
CVr [%] | — | 6,7 | 4,4 | 6,7 | 5,7 |
sR [mg/kg] | — | 0,4 | 0,5 | 0,9 | 1,0 |
CVR [%] | — | 8,9 | 11,1 | 10,1 | 11,5 |
Recovery [%] | — | 92,0 | 93,0 | 92,0 | 89,0 |
=
Not detected
=
standard deviation of repeatability
=
coefficient of variation of repeatability, %
=
standard deviation of reproducibility
=
coefficient of variation of reproducibility, %.
2-[N-2'-(hydroxyethyl)carbamoyl]-3-methylquinoxaline-N 1 ,N 4 -dioxide
This method makes it possible to determine the level olaquindox in feed. The limit of quantification is 5 mg/kg.
The sample is extracted by a water-methanol mixture. The content of olaquindox is determined by reversed-phase high-performance liquid chromatography (HPLC) using an UV detector.
Water (3.3)-methanol (3.2) mixture, 900 +100 (V + V).
Weigh to the nearest 0,1 mg 50 mg of olaquindox (3.5) in a 200 ml graduated flask and add ca. 190 ml water. Then place the flask for 20 min. into an ultrasonic bath (4.1). After ultrasonic treatment bring the solution to room temperature, make up to the mark with water and mix. Wrap the flask with aluminium foil and store in a refrigerator. This solution must be prepared fresh each month.
Transfer 10,0 ml of the stock standard solution (3.5.1) into a 100 ml graduated flask, make up to the mark with the mobile phase (3.4) and mix. Wrap the flask with aluminium foil and store in a refrigerator. This solution must be prepared fresh each day.
Into a series of 50 ml graduated flasks transfer 1,0, 2,0, 5,0, 10,0, 15,0 and 20,0 ml of the intermediate standard solution (3.5.2). Make up to the mark with the mobile phase (3.4) and mix. Wrap the flasks with aluminium foil. These solutions correspond to 0,5, 1,0, 2,5, 5,0, 7,5 and 10,0 μg of olaquindox per ml respectively.
These solutions must be prepared fresh each day.
Olaquindox is light sensitive. Carry out all procedures under subdued light or use amber glassware.
For the purpose of this method the blank feed shall be similar in type to that of the sample and olaquindox must not be detected.
Weigh to the nearest 0,01 g, approximately 50 g of the sample. Transfer to a 1 000 ml conical flask, add 100 ml of methanol (3.1) and place the flask for 5 min. in the ultrasonic bath (4.1). Add 410 ml water and leave in the ultrasonic bath for further 15 min. Remove the flask from the ultrasonic bath, shake it for 30 min. on the shaker (4.2) and filter through a folded filter. Transfer 10,0 ml of the filtrate into a 20 ml graduated flask, make up to the mark with water and mix. An aliquot is filtered through a membrane filter (4.4). (see 9. Observation) Proceed to the HPLC determination (5.3).
The following conditions are offered for guidance, other conditions may be used provided that they give equivalent results.
Analytical column (4.3.1) | |
Mobile Phase (3.4): | water (3.3)-methanol (3.2) mixture, 900 + 100 (V + V) |
Flow rate: | 1,5-2 ml/min. |
Detection wavelength: | 380 nm |
Injection volume: | 20 μl –100 μl |
Check the stability of the chromatographic system, injecting several times the calibration solution (3.5.3) containing 2,5 μg/ml, until constant peak heights and retention times are achieved.
Inject each calibration solution (3.5.3) several times and determine the mean peak heights (areas) for each concentration. Plot a calibration graph using the mean peak heights (areas) of the calibration solutions as the ordinates and the corresponding concentrations in μg/ml as the abscissae.
Inject the sample extract (5.2) several times using the same volume as taken for the calibration solutions and determine the mean peak height (area) of the olaquindox peaks.
From the mean height (area) of the olaquindox peaks of the sample solution determine the concentration of the sample solution in μg/ml by reference to the calibration graph (5.3.2).
The olaquindox content w in mg/kg of the sample is given by the following formula:
in which:
=
olaquindox concentration of the sample extract (5.2) in μg/ml
=
weight of the test portion in g (5.2).
The identity of the analyte can be confirmed by co-chromatography, or by using a diode-array detector by which the spectra of the sample extract (5.2) and the calibration solution (3.5.3) containing 5,0 μg/ml are compared.
A sample extract (5.2) is fortified by addition of an appropriate amount of calibration solution (3.5.3). The amount of added olaquindox must be similar to the amount of olaquindox found in the sample extract.
Only the height of the olaquindox peak shall be enhanced after taking into account both the amount added and the dilution of the extract. The peak width, at half of its height, must be within ± 10 % of the original width of the olaquindox peak of the unfortified sample extract.
The results are evaluated according to the following criteria:
The wavelength of maximum absorption of the sample and of the standard spectra, recorded at the peak apex on the chromatogram, must be the same within a margin determined by the resolving power of the detection system. For diode-array detection this is typically within ± 2 nm.
Between 220 and 400 nm, the sample and standard spectra recorded at the peak apex of the chromatogram, must not be different for those parts of the spectrum within the range 10 %-100 % of relative absorbance. This criterion is met when the same maxima are present and at no observed point the deviation between the two spectra exceeds 15 % of the absorbance of the standard analyte.
Between 220 and 400 nm, the spectra of the upslope, apex and downslope of the peak produced by the sample extract must not be different from each other for those parts of the spectrum within the range 10 %-100 % of relative absorbance. This criterion is met when the same maxima are present and when at all observed points the deviation between the spectra does not exceed 15 % of the absorbance of the spectrum of the peak apex.
If one of these criteria is not met the presence of the analyte has not been confirmed.
The difference between the results of two parallel determinations carried out on the same sample must not exceed 15 % relative to the higher result for olaquindox contents between 10 and 200 mg/kg.
For a fortified blank sample the recovery shall be at least 90 %.
An EC collaborative study was arranged in which four piglet feed samples including one blank feed were analysed by up to 13 laboratories. The results are given below:
Sample 1 | Sample 2 | Sample 3 | Sample 4 | |
---|---|---|---|---|
L | 13 | 10 | 11 | 11 |
n | 40 | 40 | 44 | 44 |
mean [mg/kg] | — | 14,6 | 48,0 | 95,4 |
Sr [mg/kg] | — | 0,82 | 2,05 | 6,36 |
SR [mg/kg] | — | 1,62 | 4,28 | 8,42 |
CVr [%] | — | 5,6 | 4,3 | 6,7 |
CVR [%] | — | 11,1 | 8,9 | 8,8 |
Nominal content | ||||
[mg/kg] | — | 15 | 50 | 100 |
recovery % | — | 97,3 | 96,0 | 95,4 |
=
number of laboratories
=
number of single values
=
standard deviation of repeatability
=
standard deviation of reproducibility
=
coefficient of variation of repeatability
=
coefficient of variation of reproducibility.
Although the method has not been validated for feeds containing more than 100 mg/kg of olaquindox, it may be possible to obtain satisfactory results by taking a smaller sample weight and/or diluting the extract (5.2) to reach a concentration within the range of the calibration graph (5.3.2).
1-[(4-amino-2-propylpyrimidin-5-yl)methyl]-2-methyl-pyridinium chloride hydrochloride
This method makes it possible to determine the level of amprolium in feed and premixtures. The detection limit is 1 mg/kg, the limit of quantification is 5 mg/kg.
The sample is extracted with a methanol-water mixture. After dilution with the mobile phase and membrane filtration the content of amprolium is determined by cation exchange high performance liquid chromatography (HPLC) using a UV detector.
Dissolve 13,8 g of sodium dihydrogen phosphate monohydrate in water (3.3) in a 1 000 ml graduated flask, make up to the mark with water (3.3) and mix.
Dissolve 224,74 g of sodium perchlorate monohydrate in water (3.3) in a 1 000 ml graduated flask, make up to the mark with water (3.3) and mix.
Mixture of acetonitrile (3.2), sodium dihydrogen phosphate solution (3.4) and sodium perchlorate solution (3.5), 450+450+100 (v+v+v). Prior to use filter through a 0,22 μm membrane filter (4.3) and degas the solution (e.g. in the ultrasonic bath (4.4) for at least 15 minutes).
Weigh to the nearest 0,1 mg, 50 mg of amprolium (3.7) in a 100 ml graduated flask, dissolve in 80 ml methanol (3.1) and place the flask for 10 min. in an ultrasonic bath (4.4). After ultrasonic treatment bring the solution to room temperature, make up to the mark with water and mix. At a temperature of ≤ 4 oC the solution is stable for 1 month.
Pipette 5,0 ml of the stock standard solution (3.7.1) into a 50 ml graduated flask, make up to the mark with the extraction solvent (3.8) and mix. At a temperature of ≤ 4 oC the solution is stable for 1 month.
Transfer 0,5, 1,0 and 2,0 ml of the intermediate standard solution (3.7.2) into a series of 50 ml graduated flasks. Make up to the mark with the mobile phase (3.6) and mix. These solutions correspond to 0,5, 1,0 and 2,0 μg of amprolium per ml respectively. These solutions must be prepared freshly before use.
Methanol (3.1)-water mixture 2+1 (v+v).
For the performance of the recovery test (5.1.2) a blank feed shall be analysed to check that neither amprolium nor interfering substances are present. The blank feed shall be similar in type to that of the sample and amprolium or interfering substances must not be detected.
A recovery test shall be carried out by analysing the blank feed which has been fortified by addition of a quantity of amprolium, similar to that present in the sample. To fortify at a level of 100 mg/kg, transfer 10,0 ml of the stock standard solution (3.7.1) to a 250 ml conical flask and evaporate the solution to approximately 0,5 ml. Add 50 g of the blank feed, mix thoroughly and leave for 10 min. mixing again several times before proceeding with the extraction step (5.2).
Alternatively, if a blank feed similar in type to that of the sample is not available (see 5.1.1), a recovery test can be performed by means of the standard addition method. In this case, the sample to be analysed is fortified with a quantity of amprolium similar to that already present in the sample. This sample is analysed together with the unfortified sample and the recovery can be calculated by subtraction.
Weigh to the nearest 0,01 g, 5-40 g of the sample depending on the amprolium content into a 500 ml conical flask and add 200 ml extraction solvent (3.8). Place the flask in the ultrasonic bath (4.4) and leave for 15 minutes. Remove the flask from the ultrasonic bath and shake it for 1 h on the shaker or stir on the magnetic stirrer (4.5). Dilute an aliquot of the extract with the mobile phase (3.6) to an amprolium content of 0,5-2 μg/ml and mix (see observation 9.3). Filter 5-10 ml of this diluted solution on a membrane filter (4.2). Proceed to the HPLC determination (5.3).
Weigh to the nearest 0,001 g, 1-4 g of the premixture depending on the amprolium content into a 500 ml conical flask and add 200 ml extraction solvent (3.8). Place the flask in the ultrasonic bath (4.4) and leave for 15 minutes. Remove the flask from the ultrasonic bath and shake it for 1 h on the shaker or stir on the magnetic stirrer (4.5). Dilute an aliquot of the extract with the mobile phase (3.6) to an amprolium content of 0,5-2 μg/ml and mix. Filter 5-10 ml of this diluted solution on a membrane filter (4.2). Proceed to the HPLC determination (5.3).
The following conditions are offered for guidance, other conditions may be used provided that they give equivalent results.
Liquid chromatographic | |
column (4.1.1): | 125 mm × 4 mm, cation exchange Nucleosil 10 SA, 5 or 10 μm packing, or equivalent |
Mobile phase (3.6): | Mixture of acetonitrile (3.2), sodium dihydrogen phosphate solution (3.4) and sodium perchlorate solution (3.5), 450+450+100 (v+v+v). |
Flow rate: | 0,7-1 ml/min |
Detection wavelength: | 264 nm |
Injection volume: | 100 μl |
Check the stability of the chromatographic system, injecting several times the calibration solution (3.7.3) containing 1,0 μg/ml, until constant peak heights and retention times are achieved.
Inject each calibration solution (3.7.3) several times and determine the mean peak heights (areas) for each concentration. Plot a calibration graph using the mean peak heights (areas) of the calibration solutions as the ordinates and the corresponding concentrations in μg/ml as the abscissae.
Inject the sample extract (5.2) several times using the same volume as taken for the calibration solutions and determine the mean peak height (area) of the amprolium peaks.
From the mean height (area) of the amprolium peaks of the sample solution determine the concentration of the sample solution in μg/ml by reference to the calibration graph (5.3.2).
The amprolium content w in mg/kg of the sample is given by the following formula:
in which:
=
volume of the extraction solvent (3.8) in ml according to 5.2 (i.e. 200 ml)
=
amprolium concentration of the sample extract (5.2) in μg/ml
=
dilution factor according to 5.2
=
weight of the test portion in g.
The identity of the analyte can be confirmed by co-chromatography, or by using a diode-array detector by which the spectra of the sample extract (5.2) and the calibration solution (3.7.3) containing 2,0 μg/ml are compared.
A sample extract (5.2) is fortified by addition of an appropriate amount of calibration solution (3.7.3). The amount of added amprolium must be similar to the amount of amprolium found in the sample extract.
Only the height of the amprolium peak shall be enhanced after taking into account both the amount added and the dilution of the extract. The peak width, at half of its height, must be within ± 10 % of the original width of the amprolium peak of the unfortified sample extract.
The results are evaluated according to the following criteria:
The wavelength of maximum absorption of the sample and of the standard spectra, recorded at the peak apex on the chromatogram, must be the same within a margin determined by the resolving power of the detection system. For diode-array detection this is typically within ± 2 nm.
Between 210 and 320 nm, the sample and standard spectra recorded at the peak apex of the chromatogram, must not be different for those parts of the spectrum within the range 10 %-100 % of relative absorbance. This criterion is met when the same maxima are present and at no observed point the deviation between the two spectra exceeds 15 % of the absorbance of the standard analyte.
Between 210 and 320 nm, the spectra of the upslope, apex and downslope of the peak produced by the sample extract must not be different from each other for those parts of the spectrum within the range 10 %-100 % of relative absorbance. This criterion is met when the same maxima are present and when at all observed points the deviation between the spectra does not exceed 15 % of the absorbance of the spectrum of the peak apex.
If one of these criteria is not met, the presence of the analyte has not been confirmed.
The difference between the results of two parallel determinations carried out on the same sample must not exceed:
15 % relative to the higher value for amprolium contents from 25 mg/kg to 500 mg/kg,
75 mg/kg for amprolium contents between 500 mg/kg and 1 000 mg/kg,
7,5 % relative to the higher value for amprolium contents of more than 1 000 mg/kg.
For a fortified (blank) sample the recovery shall be at least 90 %.
A collaborative study was arranged in which three poultry feeds (sample 1-3), one mineral feed (sample 4) and one premix (sample 5) were analysed. The results are given in the following table:
Sample 1 (blank feed) | Sample 2 | Sample 3 | Sample 4 | Sample 5 | |
---|---|---|---|---|---|
L | 14 | 14 | 14 | 14 | 15 |
n | 56 | 56 | 56 | 56 | 60 |
mean [mg/kg] | — | 45,5 | 188 | 5 129 | 25 140 |
sr [mg/kg] | — | 2,26 | 3,57 | 178 | 550 |
CVr [%] | — | 4,95 | 1,9 | 3,46 | 2,2 |
sR [mg/kg] | — | 2,95 | 11,8 | 266 | 760 |
CVR [%] | — | 6,47 | 6,27 | 5,19 | 3,0 |
nominal content [mg/kg] | — | 50 | 200 | 5 000 | 25 000 |
=
number of laboratories
=
number of single values
=
standard deviation of repeatability
=
coefficient of variation of repeatability
=
standard deviation of reproducibility
=
coefficient of variation of reproducibility.
Methyl 3-(2-quinoxalinylmethylene)carbazate N1,N4-dioxide
This method makes it possible to determine the level of carbadox in feed, premixtures and preparations. The detection limit is 1 mg/kg. The limit of quantification is 5 mg/kg.
The sample is equilibrated with water and extracted with methanol-acetonitrile. For feed, an aliquot portion of the filtered extract is subjected to clean-up on an aluminium oxide column. For premixtures and preparations an aliquot portion of the filtered extract is diluted to an appropriate concentration with water, methanol and acetonitrile. The content of carbadox is determined by reversed-phase high-performance liquid chromatography (HPLC) using a UV detector.
Mix 500 ml of methanol (3.1) with 500 ml of acetonitrile (3.2).
Dilute 10 ml acetic acid (3.3) to 100 ml with water.
Dissolve 0,82 g of sodium acetate (3.7) in 700 ml of water (3.8) and adjust the pH to 6,0 with acetic acid (3.6). Transfer to a 1 000 ml graduated flask, make up to the mark with water (3.8) and mix.
Mix 825 ml of acetate buffer solution (3.9) with 175 ml of acetonitrile (3.2).
Filter through a 0,22 μm filter (4.5) and degas the solution (e.g. by ultrasonification for 10 minutes).
Pure carbadox: Methyl 3-(2-quinoxalinylmethylene)carbazate N1,N4-dioxide, E 850.
Weigh to the nearest 0,1 mg, 25 mg of carbadox standard substance (3.11) into a 250 ml graduated flask. Dissolve in methanol-acetonitrile (3.5) by ultrasonification (4.7). After ultrasonic treatment bring the solution to room temperature, make up to the mark with methanol-acetonitrile (3.5) and mix. Wrap the flask with aluminium foil or use amber glassware and store in a refrigerator. At a temperature of ≤ 4 oC the solution is stable for 1 month.
Transfer 2,0, 5,0, 10,0, and 20,0 ml of the stock standard solution (3.11.1) into a series of 100 ml calibrated flasks. Add 30 ml of water, make up to the mark with methanol-acetonitrile (3.5) and mix. Wrap the flasks with aluminium foil. These solutions correspond to 2,0, 5,0, 10,0 and 20,0 μg/ml of carbadox respectively.
Calibration solutions must be freshly prepared before use.
For the determination of carbadox in feed containing less than 10 mg/kg, calibration solutions with a concentration below 2,0 μg/ml must be prepared.
Mix 300 ml of water with 700 ml of the mixture of methanol-acetonitrile (3.5).
a glass column fitted with a stopcock or a glass column with a tapered end may also be used; in this case, a small glass-wool plug is inserted into the lower end and it is tamped down using a glass rod.
Carbadox is light-sensitive. Carry out all procedures under subdued light or use amber glassware or glassware wrapped in aluminium foil.
For the performance of the recovery test (5.1.2) a blank feed shall be analysed to check that neither carbadox nor interfering substances are present. The blank feed shall be similar in type to that of the sample and on analysis carbadox or interfering substances must not be detected.
A recovery test shall be carried out by analysing the blank feed (5.1.1) which has been fortified by the addition of a quantity of carbadox, similar to that present in the sample. To fortify at a level of 50 mg/kg, transfer 5,0 ml of the stock standard solution (3.11.1) to a 200 ml conical flask. Evaporate the solution to approximately 0,5 ml in a stream of nitrogen. Add 10 g of the blank feed, mix and wait for 10 minutes before proceeding with the extraction step (5.2).
Alternatively, if a blank feed similar in type to that of the sample is not available (see 5.1.1), a recovery test can be performed by means of the standard addition method. In this case, the sample is fortified with a quantity of carbadox, similar to that already present in the sample. This sample is analysed, together with the unfortified sample and the recovery can be calculated by subtraction.
Weigh to the nearest 0,01 g, 10 g of the sample and transfer to a 200 ml conical flask. Add 15,0 ml of water, mix, and equilibrate for 5 min. Add 35,0 ml of methanol-acetonitrile (3.5), stopper and shake for 30 min. on the shaker or stir on the magnetic stirrer (4.1). Filter the solution through a glass fibre filter paper (4.2). Retain this solution for the purification step (5.3).
Weigh to the nearest 0,001 g, 1 g of the unground sample and transfer to a 200 ml conical flask. Add 15,0 ml of water, mix, and equilibrate for 5 min. Add 35,0 ml of methanol-acetonitrile (3.5), stopper and shake for 30 min. on the shaker or stir on the magnetic stirrer (4.1). Filter the solution through a glass fibre filter paper (4.2).
Pipet an aliquot of filtrate into a 50 ml calibrated flask. Add 15,0 ml of water, make up to the mark with methanol-acetonitrile (3.5) and mix. The carbadox concentration of the final solution shall be approximately 10 μg/ml. An aliquot is filtered through a 0,45 μm filter (4.6).
Proceed to the HPLC determination (5.4).
Weigh to the nearest 0,001 g, 0,2 g of the unground sample and transfer to a 250 ml conical flask. Add 45,0 ml of water, mix, and equilibrate for 5 min. Add 105,0 ml of methanol-acetonitrile (3.5), stopper and homogenise. Sonicate (4.7) the sample for 15 min. followed by shaking or stirring for 15 min. (4.1). Filter the solution through a glass fibre filter paper (4.2).
Dilute an aliquot of filtrate with the mixture of water-methanol-acetonitrile (3.12) to a final carbadox concentration of 10-15 μg/ml (for a 10 % preparation, the dilution factor is 10). An aliquot is filtered through a 0,45 μm filter (4.6).
Proceed to the HPLC determination (5.4).
Weigh 4 g of aluminium oxide (3.4) and transfer it to the glass column (4.3).
Apply 15 ml of the filtered extract (5.2.1) to the aluminium oxide column and discard the first 2 ml of eluate. Collect the next 5 ml and filter an aliquot through a 0,45 μm filter (4.6).
Proceed to the HPLC determination (5.4).
The following conditions are offered for guidance, other conditions may be used provided they yield equivalent results:
Liquid chromatographic | |
column (4.4.1): | 300 mm × 4 mm, C18, 10 μmpacking or equivalent |
Mobile phase (3.10): | Mixture of acetate buffer solution (3.9) and acetonitrile (3.2), 825 + 175 (v+v) |
Flow rate: | 1,5-2 ml/min. |
Detection wavelength: | 365 nm |
Injection volume: | 20 μl |
Check the stability of the chromatographic system, injecting the calibration solution (3.11.2) containing 5,0 μg/ml several times, until constant peak heights (areas) and retention times are achieved.
Inject each calibration solution (3.11.2) several times and measure the peak heights (areas) for each concentration. Plot a calibration curve using the mean peak heights or areas of the calibration solutions as the ordinates and corresponding concentrations in μg/ml as the abscissae.
Inject the sample extract [(5.3.2) for feed, (5.2.2) for premixtures and (5.2.3) for preparations] several times and determine the mean peak height (area) of the carbadox peaks.
From the mean height (area) of the carbadox peaks of the sample solution determine the carbadox concentration of the sample solution in μg/ml by reference to the calibration graph (5.4.2).
The content of carbadox w (mg/kg) in the sample is given by the following formula:
in which:
=
carbadox concentration of the sample extract (5.3.2) in μg/ml
=
extraction volume in ml (i.e. 50)
=
weight of the test portion in g.
The content of carbadox w (mg/kg) in the sample is given by the following formula:
in which:
=
carbadox concentration of the sample extract (5.2.2 or 5.2.3) in μg/ml
=
extraction volume in ml (i.e. 50 for premixtures; 150 for preparations)
=
dilution factor according to 5.2.2 (premixtures) or 5.2.3 (preparations)
=
weight of the test portion in g.
The identity of the analyte can be confirmed by co-chromatography, or by using a diode-array detector by which the spectra of the sample extract and the calibration solution (3.11.2) containing 10,0 μg/ml are compared.
A sample extract is fortified by addition of an appropriate amount of calibration solution (3.11.2). The amount of added carbadox must be similar to the estimated amount of carbadox found in the sample extract.
Only the height of the carbadox peak shall be enhanced after taking into account both the amount added and the dilution of the extract. The peak width, at half of its maximum height, must be within approximately 10 % of the original width.
The results are evaluated according to the following criteria:
the wavelength of maximum absorption of the sample and of the standard spectra, recorded at the peak apex on the chromatogram, must be the same within a margin determined by the resolving power of the detection system. For diode-array detection, this is typically within + 2 nm;
between 225 and 400 nm, the sample and standard spectra recorded at the peak apex on the chromatogram, must not be different for those parts of the spectrum within the range 10 % to 100 % of relative absorbance. This criterion is met when the same maxima are present and at no observed point the deviation between the two spectra exceeds 15 % of the absorbance of the standard analyte;
between 225 and 400 nm, the spectra of the upslope, apex and downslope of the peak produced by the sample extract must not be different from each other for those parts of the spectrum within the range 10 % to 100 % of relative absorbance. This criterion is met when the same maxima are present and when at all observed points the deviation between the spectra does not exceed 15 % of the absorbance of the spectrum of the apex.
If one of these criteria is not met the presence of the analyte has not been confirmed.
For contents of 10 mg/kg and higher, the difference between the results of two parallel determinations carried out on the same sample must not exceed 15 % relative to the higher result.
For a fortified (blank) sample the recovery shall be at least 90 %.
A collaborative study was arranged in which 6 feed, 4 premixtures and 3 preparations were analysed by 8 laboratories. Duplicate analyses were performed on each sample. (More detailed information on this collaborative study can be found in the Journal of the AOAC, Volume 71, 1988, p. 484-490). The results (excluding outliers) are shown below:
Results of the collaborative study for feed
Sample 1 | Sample 2 | Sample 3 | Sample 4 | Sample 5 | Sample 6 | |
---|---|---|---|---|---|---|
L | 8 | 8 | 8 | 8 | 8 | 8 |
n | 15 | 14 | 15 | 15 | 15 | 15 |
Mean (mg/kg) | 50,0 | 47,6 | 48,2 | 49,7 | 46,9 | 49,7 |
Sr (mg/kg) | 2,9 | 2,69 | 1,38 | 1,55 | 1,52 | 2,12 |
CVr (%) | 5,8 | 5,6 | 2,9 | 3,1 | 3,2 | 4,3 |
SR (mg/kg) | 3,92 | 4,13 | 2,23 | 2,58 | 2,26 | 2,44 |
CVR (%) | 7,8 | 8,7 | 4,6 | 5,2 | 4,8 | 4,9 |
Nominal content (mg/kg) | 50,0 | 50,0 | 50,0 | 50,0 | 50,0 | 50,0 |
Results of the collaborative study for premixtures and preparations
Premixtures | Preparations | ||||||
---|---|---|---|---|---|---|---|
A | B | C | D | A | B | C | |
L | 7 | 7 | 7 | 7 | 8 | 8 | 8 |
n | 14 | 14 | 14 | 14 | 16 | 16 | 16 |
Mean (g/kg) | 8,89 | 9,29 | 9,21 | 8,76 | 94,6 | 98,1 | 104 |
Sr (g/kg) | 0,37 | 0,28 | 0,28 | 0,44 | 4,1 | 5,1 | 7,7 |
CVr (%) | 4,2 | 3,0 | 3,0 | 5,0 | 4,3 | 5,2 | 7,4 |
SR (g/kg) | 0,37 | 0,28 | 0,4 | 0,55 | 5,4 | 6,4 | 7,7 |
CVR (%) | 4,2 | 3,0 | 4,3 | 6,3 | 5,7 | 6,5 | 7,4 |
Nominal content (g/kg) | 10,0 | 10,0 | 10,0 | 10,0 | 100 | 100 | 100 |
=
number of laboratories
=
number of single values
=
standard deviation of repeatability
=
coefficient of variation of repeatability
=
standard deviation of reproducibility
=
coefficient of variation of reproducibility.
The Whole Regulation you have selected contains over 200 provisions and might take some time to download. You may also experience some issues with your browser, such as an alert box that a script is taking a long time to run.
Would you like to continue?
The Schedules you have selected contains over 200 provisions and might take some time to download. You may also experience some issues with your browser, such as an alert box that a script is taking a long time to run.
Would you like to continue?
Latest Available (revised):The latest available updated version of the legislation incorporating changes made by subsequent legislation and applied by our editorial team. Changes we have not yet applied to the text, can be found in the ‘Changes to Legislation’ area.
Original (As adopted by EU): The original version of the legislation as it stood when it was first adopted in the EU. No changes have been applied to the text.
Point in Time: This becomes available after navigating to view revised legislation as it stood at a certain point in time via Advanced Features > Show Timeline of Changes or via a point in time advanced search.
Geographical Extent: Indicates the geographical area that this provision applies to. For further information see ‘Frequently Asked Questions’.
Show Timeline of Changes: See how this legislation has or could change over time. Turning this feature on will show extra navigation options to go to these specific points in time. Return to the latest available version by using the controls above in the What Version box.
Access essential accompanying documents and information for this legislation item from this tab. Dependent on the legislation item being viewed this may include:
This timeline shows the different versions taken from EUR-Lex before exit day and during the implementation period as well as any subsequent versions created after the implementation period as a result of changes made by UK legislation.
The dates for the EU versions are taken from the document dates on EUR-Lex and may not always coincide with when the changes came into force for the document.
For any versions created after the implementation period as a result of changes made by UK legislation the date will coincide with the earliest date on which the change (e.g an insertion, a repeal or a substitution) that was applied came into force. For further information see our guide to revised legislation on Understanding Legislation.
Use this menu to access essential accompanying documents and information for this legislation item. Dependent on the legislation item being viewed this may include:
Click 'View More' or select 'More Resources' tab for additional information including: