- Latest available (Revised)
- Point in Time (21/06/2012)
- Original (As adopted by EU)
Commission Regulation (EU) No 601/2012 of 21 June 2012 on the monitoring and reporting of greenhouse gas emissions pursuant to Directive 2003/87/EC of the European Parliament and of the Council (Text with EEA relevance) (repealed)
When the UK left the EU, legislation.gov.uk published EU legislation that had been published by the EU up to IP completion day (31 December 2020 11.00 p.m.). On legislation.gov.uk, these items of legislation are kept up-to-date with any amendments made by the UK since then.
Legislation.gov.uk publishes the UK version. EUR-Lex publishes the EU version. The EU Exit Web Archive holds a snapshot of EUR-Lex’s version from IP completion day (31 December 2020 11.00 p.m.).
Point in time view as at 21/06/2012.
There are currently no known outstanding effects for the Commission Regulation (EU) No 601/2012 (repealed), ANNEX II.
Revised legislation carried on this site may not be fully up to date. At the current time any known changes or effects made by subsequent legislation have been applied to the text of the legislation you are viewing by the editorial team. Please see ‘Frequently Asked Questions’ for details regarding the timescales for which new effects are identified and recorded on this site.
The uncertainty thresholds in Table 1 shall apply to tiers relevant to activity data requirements in accordance with point (a) of Article 28(1) and the first subparagraph of Article 29(2), and Annex IV, of this Regulation. The uncertainty thresholds shall be interpreted as maximum permissible uncertainties for the determination of source streams over a reporting period.
Where Table 1 does not include activities listed in Annex I to Directive 2003/87/EC and the mass balance is not applied, the operator shall use the tiers listed in Table 1 under ‘Combustion of fuels and fuels used as process input’ for those activities.
Tiers for activity data (maximum permissible uncertainty for each tier)
a For monitoring emissions from catalytic cracker regeneration (other catalyst regeneration and flexi-cokers) in mineral oil refineries, the required uncertainty is related to the total uncertainty of all emissions from that source. | |||||
b Amount [t] of CKD or bypass dust (where relevant) leaving the kiln system over a reporting period estimated using industry best practice guidelines. | |||||
Activity/source stream type | Parameter to which the uncertainty is applied | Tier 1 | Tier 2 | Tier 3 | Tier 4 |
---|---|---|---|---|---|
Combustion of fuels and fuels used as process input | |||||
Commercial standard fuels | Amount of fuel [t] or [Nm3] | ± 7,5 % | ± 5 % | ± 2,5 % | ± 1,5 % |
Other gaseous and liquid fuels | Amount of fuel [t] or [Nm3] | ± 7,5 % | ± 5 % | ± 2,5 % | ± 1,5 % |
Solid fuels | Amount of fuel [t] | ± 7,5 % | ± 5 % | ± 2,5 % | ± 1,5 % |
Flaring | Amount of flare gas [Nm3] | ± 17,5 % | ± 12,5 % | ± 7,5 % | |
Scrubbing: carbonate (Method A) | Amount carbonate consumed [t] | ± 7,5 % | |||
Scrubbing: gypsum (Method B) | Amount gypsum produced [t] | ± 7,5 % | |||
Refining of mineral oil | |||||
Catalytic cracker regenerationa | Uncertainty requirements apply separately for each emission source | ± 10 % | ± 7,5 % | ± 5 % | ± 2,5 % |
Hydrogen production | Hydrocarbon feed [t] | ± 7,5 % | ± 2,5 % | ||
Production of coke | |||||
Mass balance methodology | Each input and output material [t] | ± 7,5 % | ± 5 % | ± 2,5 % | ± 1,5 % |
Metal ore roasting and sintering | |||||
Carbonate input | Carbonate input material and process residues [t] | ± 5 % | ± 2,5 % | ||
Mass balance methodology | Each input and output material [t] | ± 7,5 % | ± 5 % | ± 2,5 % | ± 1,5 % |
Production of iron and steel | |||||
Fuel as process input | Each mass flow into and from the installation [t] | ± 7,5 % | ± 5 % | ± 2,5 % | ± 1,5 % |
Mass balance methodology | Each input and output material [t] | ± 7,5 % | ± 5 % | ± 2,5 % | ± 1,5 % |
Production of cement clinker | |||||
Kiln input based (Method A) | Each relevant kiln input [t] | ± 7,5 % | ± 5 % | ± 2,5 % | |
Clinker output (Method B) | Clinker produced [t] | ± 5 % | ± 2,5 % | ||
CKD | CKD or bypass dust [t] | n.a.b | ± 7,5 % | ||
Non-carbonate carbon | Each raw material [t] | ± 15 % | ± 7,5 % | ||
Production of lime and calcination of dolomite and magnesite | |||||
Carbonates (Method A) | Each relevant kiln input [t] | ± 7,5 % | ± 5 % | ± 2,5 % | |
Alkali earth oxide (Method B) | Lime produced [t] | ± 5 % | ± 2,5 % | ||
Kiln dust (Method B) | Kiln dust [t] | n.a.b | ± 7,5 % | ||
Manufacture of glass and mineral wool | |||||
Carbonates (input) | Each carbonate raw material or additives associated with CO2 emissions [t] | ± 2,5 % | ± 1,5 % | ||
Manufacture of ceramic products | |||||
Carbon inputs (Method A) | Each carbonate raw material or additive associated with CO2 emissions [t] | ± 7,5 % | ± 5 % | ± 2,5 % | |
Alkali oxide (Method B) | Gross production including rejected products and cullet from the kilns and shipment [t] | ± 7,5 % | ± 5 % | ± 2,5 % | |
Scrubbing | Dry CaCO3 consumed [t] | ± 7,5 % | |||
Production of pulp and paper | |||||
Make up chemicals | Amount of CaCO3 and Na2CO3 [t] | ± 2,5 % | ± 1,5 % | ||
Production of carbon black | |||||
Mass balance methodology | Each input and output material [t] | ± 7,5 % | ± 5 % | ± 2,5 % | ± 1,5 % |
Production of ammonia | |||||
Fuel as process input | Amount fuel used as process input [t] or [Nm3] | ± 7,5 % | ± 5 % | ± 2,5 % | ± 1,5 % |
Production of hydrogen and synthesis gas | |||||
Fuel as process input | Amount fuel used as process input for hydrogen production [t] or [Nm3] | ± 7,5 % | ± 5 % | ± 2,5 % | ± 1,5 % |
Mass balance methodology | Each input and output material [t] | ± 7,5 % | ± 5 % | ± 2,5 % | ± 1,5 % |
Production of bulk organic chemicals | |||||
Mass balance methodology | Each input and output material [t] | ± 7,5 % | ± 5 % | ± 2,5 % | ± 1,5 % |
Production or processing of ferrous and non-ferrous metals, including secondary aluminium | |||||
Process emissions | Each input material or process residue used as input material in the process [t] | ± 5 % | ± 2,5 % | ||
Mass balance methodology | Each input and output material [t] | ± 7,5 % | ± 5 % | ± 2,5 % | ± 1,5 % |
Primary aluminium production | |||||
Mass balance methodology | Each input and output material [t] | ± 7,5 % | ± 5 % | ± 2,5 % | ± 1,5 % |
PFC emissions (slope method) | primary aluminium production in [t], anode effect minutes in [number anode effects/cell day] and [anode effect minutes/occurrence] | ± 2,5 % | ± 1,5 % | ||
PFC emissions (overvoltage method) | primary aluminium production in [t], anode effect overvoltage [mV] and current efficiency [-] | ± 2,5 % | ± 1,5 % |
Operators shall monitor CO2 emissions from all types of combustion processes taking place under all activities as listed in Annex I to Directive 2003/87/EC or included in the Union Scheme under Article 24 of that Directive using the tier definitions laid down in this section. Where fuels are used as a process input, the same rules as for combustion emissions shall apply. Where fuels form part of a mass balance in accordance with Article 25(1) of this Regulation, the tier definitions for mass balances in section 3 of this Annex apply.
Process emissions from related exhaust gas scrubbing shall be monitored in accordance with subsection C of section 1 of Annex IV.
Where a biomass fraction is determined for a mixed fuel or material, the tiers defined shall relate to the preliminary emission factor. For fossil fuels and materials the tiers shall relate to the emission factor.
:
The operator shall apply one of the following:
the standard factors listed in section 1 of Annex VI;
other constant values in accordance with points (d) or (e) of Article 31(1), where no applicable value is contained in section 1 of Annex VI.
:
The operator shall apply country specific emission factors for the respective fuel or material in accordance with points (b) and (c) of Article 31(1).
:
The operator shall derive emission factors for the fuel based on one of the following established proxies, in combination with an empirical correlation as determined at least once per year in accordance with Articles 32 to 35 and 39:
density measurement of specific oils or gases, including those common to the refinery or steel industry;
net calorific value for specific coal types.
The operator shall ensure that the correlation satisfies the requirements of good engineering practice and that it is applied only to values of the proxy which fall into the range for which it was established.
:
The operator shall determine the emission factor in accordance with the relevant provisions of Articles 32 to 35.
:
The operator shall apply one of the following:
the standard factors listed in section 1 of Annex VI;
other constant values in accordance with points (d) or (e) of Article 31(1), where no applicable value is contained in section 1 of Annex VI.
:
The operator shall apply country specific factors for the respective fuel in accordance with points (b) or (c) of Article 31(1).
:
For commercially traded fuels the net calorific value as derived from the purchasing records for the respective fuel provided by the fuel supplier shall be used provided it has been derived based on accepted national or international standards.
:
The operator shall determine the net calorific value in accordance with Article 32 to 35.
:
The operator shall apply an oxidation factor of 1.
:
The operator shall apply oxidation factors for the respective fuel in accordance with points (b) or (c) of Article 31(1).
:
For fuels, the operator shall derive activity-specific factors based on the relevant carbon contents of ashes, effluents and other wastes and by-products, and other relevant incompletely oxidised gaseous forms of carbon emitted except CO. Composition data shall be determined in accordance with Article 32 to 35.
:
The operator shall apply a value from those published in accordance with the first subparagraph of Article 39(2) or a value determined in accordance with the second subparagraph of Article 39(2) or Article 39(3).
:
The operator shall determine specific factors in accordance with Article 39(1).
Where an operator uses a mass balance in accordance with Article 25, it shall use the tier definitions of this section.
The operator shall apply one of the tiers listed in this point. For deriving the carbon content from an emission factor, the operator shall use the following equations:
:
C = (EF × NCV) / f
:
C = EF / f
In those formulae, C is the carbon content expressed as fraction (tonne carbon per tonne product), EF is the emission factor, NCV is the net calorific value, and f is the factor laid down in Article 36(3).
Where a biomass fraction is determined for a mixed fuel or material, the tiers defined shall relate to the total carbon content. The biomass fraction of the carbon shall be determined using the tiers defined in section 2.4 of this Annex.
:
The operator shall apply one of the following:
the carbon content derived from standard factors listed in Annex VI sections 1 and 2;
other constant values in accordance with points (d) or (e) of Article 31(1), where no applicable value is contained in Annex VI sections 1 and 2.
:
The operator shall derive the carbon content from country specific emission factors for the respective fuel or material in accordance with points (b) or (c) of Article 31(1).
:
The operator shall derive the carbon content from emission factors for the fuel based on one of the following established proxies in combination with an empirical correlation as determined at least once per year in accordance with Articles 32 to 35:
density measurement of specific oils or gases common, for example, to the refinery or steel industry;
net calorific value for specific coals types.
The operator shall ensure that the correlation satisfies the requirements of good engineering practice and that it is applied only to values of the proxy which fall into the range for which it was established.
:
The operator shall determine the carbon content in accordance with the relevant provisions of Articles 32 to 35.
The tiers defined in section 2.2 of this Annex shall be used.
For all process emissions, where they are monitored using the standard methodology in accordance with Article 24(2), the following tier definitions for the emission factor shall be applied in the case of:
:
Input based, the emission factor and activity data related to the amount of material input into the process.
:
Output based, the emission factor and activity data related to the amount of output from the process.
:
The determination of the amount of relevant carbonates in each relevant input material shall be carried out according Articles 32 to 35. Stoichiometric ratios as listed in section 2 of Annex VI shall be used to convert composition data into emission factors.
:
A conversion factor of 1 shall be used.
:
Carbonates and other carbon leaving the process shall be considered by means of a conversion factor with a value between 0 and 1. The operator may assume complete conversion for one or several inputs and attribute unconverted materials or other carbon to the remaining inputs. The additional determination of relevant chemical parameters of the products shall be carried out in accordance with Articles 32 to 35.
:
The operator shall apply the standard factors listed in Annex VI, section 2, Table 3.
:
The operator shall apply a country specific emission factor in accordance with points (b) or (c) of Article 31(1).
:
The determination of the amount of relevant metal oxides stemming from the decomposition of carbonates in the product shall be carried out in accordance with Articles 32 to 35. Stoichiometric ratios referred to in Annex VI, section 2, Table 3 shall be used to convert composition data into emission factors assuming that all of the relevant metal oxides have been derived from respective carbonates.
:
A conversion factor of 1 shall be used.
:
The amount of non-carbonate compounds of the relevant metals in the raw materials, including return dust or fly ash or other already calcined materials, shall be reflected by means of conversion factors with a value between 0 and 1 with a value of 1 corresponding to a full conversion of raw material carbonates into oxides. The additional determination of relevant chemical parameters of the process inputs shall be carried out in accordance with Articles 32 to 35.
The Whole Regulation you have selected contains over 200 provisions and might take some time to download. You may also experience some issues with your browser, such as an alert box that a script is taking a long time to run.
Would you like to continue?
The Schedules you have selected contains over 200 provisions and might take some time to download. You may also experience some issues with your browser, such as an alert box that a script is taking a long time to run.
Would you like to continue?
Latest Available (revised):The latest available updated version of the legislation incorporating changes made by subsequent legislation and applied by our editorial team. Changes we have not yet applied to the text, can be found in the ‘Changes to Legislation’ area.
Original (As adopted by EU): The original version of the legislation as it stood when it was first adopted in the EU. No changes have been applied to the text.
Point in Time: This becomes available after navigating to view revised legislation as it stood at a certain point in time via Advanced Features > Show Timeline of Changes or via a point in time advanced search.
Geographical Extent: Indicates the geographical area that this provision applies to. For further information see ‘Frequently Asked Questions’.
Show Timeline of Changes: See how this legislation has or could change over time. Turning this feature on will show extra navigation options to go to these specific points in time. Return to the latest available version by using the controls above in the What Version box.
Access essential accompanying documents and information for this legislation item from this tab. Dependent on the legislation item being viewed this may include:
This timeline shows the different versions taken from EUR-Lex before exit day and during the implementation period as well as any subsequent versions created after the implementation period as a result of changes made by UK legislation.
The dates for the EU versions are taken from the document dates on EUR-Lex and may not always coincide with when the changes came into force for the document.
For any versions created after the implementation period as a result of changes made by UK legislation the date will coincide with the earliest date on which the change (e.g an insertion, a repeal or a substitution) that was applied came into force. For further information see our guide to revised legislation on Understanding Legislation.
Use this menu to access essential accompanying documents and information for this legislation item. Dependent on the legislation item being viewed this may include:
Click 'View More' or select 'More Resources' tab for additional information including: