Commission Implementing Regulation (EU) 2016/1240 of 18 May 2016 laying down rules for the application of Regulation (EU) No 1308/2013 of the European Parliament and of the Council with regard to public intervention and aid for private storage (Text with EEA relevance)

# ANNEX I

# CEREALS

# PART I

# 1. DEFINITION OF MATTER OTHER THAN BASIC CEREALS OF UNIMPAIRED QUALITY

# 1.1. Broken grains

For durum wheat, common wheat and barley, the definition of 'broken grains' is that contained in standard EN 15587.

For maize, the definition of 'broken grains' is that contained in standard EN 16378.

# 1.2. **Grain impurities**

# (a) *Shrivelled grains*

For durum wheat, common wheat and barley, the definition of 'shrivelled grains' is that contained in standard EN 15587. However, for barley from Estonia, Latvia, Finland and Sweden, 'shrivelled grains' means grains with a specific weight of at least 64 kilograms per hectolitre offered or tendered for, or placed in, intervention in those Member States, grains which, after elimination of all other matter referred to in this Annex, pass through sieves with apertures of 2,0 mm.

'Shrivelled grains' does not apply to maize.

# (b) *Other cereals*

For durum wheat, common wheat and barley, the definition of 'other cereals' is that contained in standard EN 15587.

For maize, the definition of 'other cereals' is that contained in standard EN 16378.

# (c) *Grains damaged by pests*

For durum wheat, common wheat and barley, the definition of 'grains damaged by pests' is that contained in standard EN 15587.

For maize, the definition of 'grains damaged by pests' is that contained in standard EN 16378.

(d) *Grains in which the germ is discoloured* 

For durum wheat and common wheat, the definition is that contained in standard EN 15587.

'Grains in which the germ is discoloured' does not apply to barley or maize.

(e) *Grains overheated during drying* 

For durum wheat, common wheat and barley, the definition of 'grains overheated during drying' is that contained in standard EN 15587.

For maize, the definition of 'grains overheated during drying' is that contained in standard EN 16378..

(f) Mottled grains

For durum wheat, the definition of 'mottled grains' is that contained in standard EN 15587.

'Mottled grains' does not apply to common wheat, barley or maize.

# 1.3. Sprouted grains

For durum wheat, common wheat and barley, the definition of 'sprouted grains' is that contained in standard EN 15587.

For maize, the definition of 'sprouted grains' is that contained in standard EN 16378.

# 1.4. **Miscellaneous impurities**

(a) *Extraneous seeds* 

For durum wheat, common wheat and barley, the definition of 'extraneous seeds' is that contained in standard EN 15587.

For maize, the definition of 'extraneous seeds' is that contained in standard EN 16378.

'Noxious seeds' means seeds which are toxic to humans and animals, seeds hampering or complicating the cleaning and milling of cereals and seeds affecting the quality of products processed from cereals.

# (b) *Damaged grains*

For durum wheat, common wheat and barley, the definition of 'damaged grains' is that contained in standard EN 15587.

For maize, the definition of 'damaged grains' is that contained in standard EN 16378.

In standard EN 15587, for durum wheat, common wheat and barley, the definition of 'grains affected by fusariosis' is included in that of 'damaged grains'.

# (c) *Extraneous matter*

For durum wheat, common wheat and barley, the definition of 'extraneous matter' is that contained in standard EN 15587.

For maize, the definition of 'extraneous matter' is that contained in standard EN 16378. (d)*Husks (cob fragments in the case of maize)* 

(e)Ergots

(f) Decayed grains

For durum wheat and common wheat, the definition of 'decayed grains' is that contained in standard EN 15587.

'Decayed grains' does not apply to barley or maize. (g)*Impurities of animal origin.* 

1.5.Live pests

# 1.6. **Mitadiné grains**

Mitadiné grains of durum wheat are grains whose kernels cannot be regarded as entirely vitreous. They are defined in standard EN 15585.

# 2. SPECIFIC FACTORS TO TAKE INTO CONSIDERATION FOR EACH TYPE OF CEREAL FOR THE DEFINITION OF IMPURITIES

# 2.1. **Durum wheat**

'Grain impurities' means shrivelled grains, grains of other cereals, grains damaged by pests, grains in which the germ is discoloured, mottled grains and grains overheated during drying.

'Miscellaneous impurities' means extraneous seeds, damaged grains (including grains affected by fusariosis), extraneous matter, husks, ergot, decayed grains and impurities of animal origin.

# 2.2. Common wheat

'Grain impurities' means shrivelled grains, grains of other cereals, grains damaged by pests, grains in which the germ is discoloured (only where the content exceeds 8 %) and grains overheated during drying.

'Miscellaneous impurities' means extraneous seeds, damaged grains (including grains affected by fusariosis), extraneous matter, husks, ergot, decayed grains and impurities of animal origin.

# 2.3. Barley

'Grain impurities' means shrivelled grains, grains of other cereals, grains damaged by pests and grains overheated during drying.

'Miscellaneous impurities' means extraneous seeds, damaged grains (including grains affected by fusariosis), extraneous matter, husks and impurities of animal origin.

# 2.4. Maize

'Grain impurities' means grains of other cereals, grains damaged by pests and grains overheated during drying.

'Miscellaneous impurities' means extraneous seeds, damaged grains, extraneous matter, cob fragments and impurities of animal origin.

# PART II

# Methods used for determining the quality of cereals offered or tendered for, or placed in, intervention

Pursuant to Article 4, the following methods are to be used to determine the quality of cereals offered or tendered for, or placed in, intervention:

- (a) reference method for determining matter other than basic cereals of unimpaired quality:
  - (i) for common wheat, durum wheat and barley: standard EN 15587,
  - (ii) for maize: standard EN 16378;
- (b) reference method for determining the moisture content:
  - (i) for maize: standard EN ISO 6540,
  - (ii) for cereals other than maize: standard EN ISO 712, or an infrared technology-based method complying with standard EN 15948.

In the event of a dispute, only the results resulting from applying standard EN ISO 6540 for maize and standard EN ISO 712 for cereals other than maize are to be considered valid;

- (c) reference method for determining the non-stickiness and machinability of the dough obtained from common wheat: that set out in Part III of this Annex;
- (d) reference method for determining the protein content in durum wheat and ground common wheat: that set out in:
  - (i) standard EN ISO 20483, or
  - (ii) standard CEN ISO/TS 16634-2.

In the event of a dispute, only the results obtained from applying standard EN ISO 20483 are to be considered valid;

- (e) reference method for determining the Zeleny index of ground common wheat: that set out in standard EN ISO 5529;
- (f) reference method for determining the Hagberg falling number (amylase activity test): that set out in standard EN ISO 3093;
- (g) reference method for determining the rate of loss of the vitreous aspect of durum wheat: that set out in standard EN 15585;
- (h) reference method for determining the specific weight: that set out in standard EN ISO 7971/3;
- (i) sampling and analysis methods for establishing the rate of mycotoxins: those referred to in the Annex to Commission Regulation (EC) No 1881/2006<sup>(1)</sup> and set out in Annexes I and II to Commission Regulation (EC) No 401/2006<sup>(2)</sup>.

#### PART III

# Method for determining the non-stickiness and machinability of the dough obtained from common wheat

1. **Title** 

Method for test baking of wheat flour.

2. Scope

The method is applicable to flour, experimentally milled from wheat for the production of yeastraised bread.

# 3. **Principle**

Dough is made from flour, water, yeast, salt and sucrose, in a specified mixer. After dividing and rounding, the pieces are given 30 minutes' rest; they are moulded, placed on baking sheets and baked after a final proof of fixed duration. Dough-handling properties are noted. The loaves are judged by volume and height.

# 4. Ingredients

4.1. Yeast

Active dry yeast of type Saccharomyces cerevisiae DHW-Hamburg-Wansbeck or a product having the same characteristics.

4.2.*Tap water* 

# 4.3. Sugar-salt-ascorbic acid solution

Dissolve  $30 \pm 0.5$  g of sodium chloride (commercial grade),  $30 \pm 0.5$  g of sucrose (commercial grade), and  $0.040 \pm 0.001$  g ascorbic acid in  $800 \pm 5$  g of water. Prepare fresh daily.

4.4. Sugar solution

Dissolve  $5 \pm 0.1$  g sucrose (commercial grade) in  $95 \pm 1$  g of water. Prepare fresh daily.

4.5. *Enzyme active malt flour* 

Commercial grade.

# 5. **Equipment and apparatus**

# 5.1. Baking room

Controlled to maintain a temperature of 22 to 25 °C.

5.2. *Refrigerator* 

For maintaining a temperature of  $4 \pm 2$  °C.

5.3. Balance

Maximum load 2 kg, accuracy 2 g.

5.4. Balance

Maximum load 0,5 kg, accuracy 0,1 g.

5.5. *Analytical balance* 

Accuracy  $0,1 \times 10^{-3}$  g.

5.6. *Mixer* 

Stephan UMTA 10, with mixing arm model 'Detmold' (Stephan Soehne GmbH) or similar equipment having the same characteristics.

5.7. *Proving cabinet* 

Controlled to maintain a temperature of  $30 \pm 1$  °C.

5.8. *Open plastic boxes* 

Made from polymethylmethacrylate (Plexiglas, Perspex). Inside dimensions:  $25 \times 25 \times 15$  cm height, wall thickness  $0.5 \pm 0.05$  cm.

5.9. *Square plastic sheets* 

Made from polymethylmethacrylate (Plexiglas, Perspex). At least 30  $\times$  30 cm, thickness 0,5  $\pm$  0,05 cm.

5.10. Moulder

Brabender ball homogeniser (Brabender OHG) or similar equipment having the same characteristics.

#### 6. Sampling

According to standard EN ISO 24333.

#### 7. **Procedure**

7.1. *Determination of water uptake* 

Determine the water absorption according to ICC Standard No 115/1.

# 7.2. Determination of malt flour addition

Determine the 'falling number' of the flour according to standard EN ISO 3093. If the 'falling number' is higher than 250, determine the malt flour addition required to bring it within the range 200 to 250, using a series of mixtures of the flour with increasing quantities of malt flour (point 4.5). If the 'falling number' is lower than 250, no malt flour is required.

# 7.3. *Reactivation of active dry yeast*

Adjust the temperature of the sugar solution (point 4.4) to  $35 \pm 1$  °C. Pour one part by weight of the active dry yeast into four parts by weight of this tempered sugar solution. Do not stir. Swirl if necessary.

Allow to stand for  $10 \pm 1$  minute, then stir until a homogeneous suspension is obtained. Use this suspension within 10 minutes.

#### 7.4. Temperature adjustment of the flour and the dough liquid

The temperature of the flour and the water must be adjusted to give a dough temperature of  $27 \pm 1$  °C after mixing.

#### 7.5. Dough composition

Weigh, with a precision of 2 g, 10 y/3 g flour on as-is moisture basis (corresponding to 1 kg flour on a 14 % moisture basis), in which 'y' is the quantity of flour used in the farinograph test (see ICC Standard No 115/1).

Weigh, with a precision of 0,2 g, the quantity of malt flour necessary to bring the 'falling number' within the range 200 to 250 (point 7.2).

Weigh  $430 \pm 5$  g sugar-salt-ascorbic acid solution (point 4.3) and add water to a total mass of (x - 9) 10 y/3 g, (see point 10.2) in which 'x' is the quantity of water used in the farinograph test (see ICC Standard No 115/1). This total mass (usually between 450 and 650 g) must be achieved with a precision of 1,5 g.

Weigh  $90 \pm 1$  g yeast suspension (point 7.3).

Note the total mass of the dough (P), which is the sum of the masses of flour, sugar-salt-ascorbic acid solution plus water, yeast suspension and malt flour.

# 7.6. Mixing

Before starting, bring the mixer to a temperature of  $27 \pm 1$  °C by use of a suitable quantity of tempered water.

Place the liquid dough ingredients in the mixer and place the flour plus malt flour on top.

| Status: Point in time view as at 18/05/2016.                                            |
|-----------------------------------------------------------------------------------------|
| <b>Changes to legislation:</b> There are currently no known outstanding effects for the |
| Commission Implementing Regulation (EU) 2016/1240. (See end of Document for details)    |

Start the mixer (speed 1, 1 400 rev/min), and allow to run for 60 seconds. Twenty seconds after the start of mixing, turn the scraper attached to the lid of the mixing bowl two revolutions.

Measure the temperature of the dough. If it is outside the range 26 to 28 °C, discard the dough and mix a new one after adjustment of ingredient temperatures.

Note dough properties using one of the following terms:

- non-sticky and machinable, or
- sticky and non-machinable.

To be considered 'non-sticky and machinable' at the end of mixing, the dough should form a coherent mass which hardly adheres to the sides of the bowl and spindle of the mixer. It should be possible to collect the dough by hand and remove it from the mixing bowl in a single motion without noticeable loss.

# 7.7. Dividing and rounding

Weigh, with precision of 2 g, three pieces of dough according to the formula:

p = 0,25 P, where: p = mass of scaled dough piece, P = total mass of dough.

Immediately round the pieces for 15 seconds in the moulder (point 5.10) and place them for  $30 \pm 2$  minutes on the square plastic sheets (point 5.9), covered by the inverted plastic boxes (point 5.8) in the proving cabinet (point 5.7).

Do not use dusting flour.

# 7.8. Moulding

Bring the pieces of dough on the plastic sheets, covered by the inverted boxes, to the moulder (point 5.10), and re-round each piece for 15 seconds. Do not remove cover from a piece of dough until immediately before rounding. Note dough properties again, using one of the following terms:

- (a) non-sticky and machinable, or
- (b) sticky and non-machinable.

To be considered as 'non-sticky and machinable' the dough should adhere hardly, or not at all, to the sides of the chamber so that it can freely rotate around itself and form a regular ball during the operation of the machine. At the end of the operation the dough should not stick to the sides of the dough-moulding chamber when the lid of the chamber is raised.

# 8. Test report

The test report shall mention:

- (a) dough-handling properties at the end of mixing, and at moulding,
- (b) the 'falling number' of the flour without addition of malt flour,
- (c) any anomalies observed.
- (d) the method used,
- (e) all details required for the identification of the sample.
- 9. General remarks

9.1. The formula for the calculation of the quantity of dough liquid is based on the following considerations:

Addition of x ml water to the equivalent of 300 g flour at 14 % moisture produces the required consistency. As in the baking test 1 kg of flour (14 % moisture basis) is used, whereas x is based on 300 g of flour, for the baking test x divided by three and multiplied by 10 g of water is needed, so 10 x/3 g.

The 430 g sugar-salt-ascorbic acid solution contains 15 g salt and 15 g sugar. This 430 g solution is included in the dough liquid. So to add 10 x/3 g water to the dough, (10 x/3 + 30) g dough liquid composed of the 430 g sugar-salt-ascorbic acid solution and an additional quantity of water must be added.

Although part of the water added with the yeast suspension is absorbed by the yeast, this suspension also contains 'free' water. It is arbitrarily supposed that 90 g yeast suspension contains 60 g 'free' water. The quantity of the dough liquid must be corrected for this 60 g of 'free' water in the yeast suspension, so 10 x/3 plus 30 minus 60 g must finally be added. This can be rearranged as follows: (10 x/3 + 30) - 60 = 10 x/3 - 30 = (x/3 - 3) 10 = (x - 9) 10/3, the formula given in point 7.5. If, for example, a water addition x in the farinograph test was found of 165 ml, this value must be substituted in this formula, so to the 430 g sugar-salt-ascorbic acid solution water must be added to a total mass of:

 $(165 - 9) 10/3 = 156 \times 10/3 = 520$  g.

9.2. The method is not directly applicable to wheat. The procedure to be followed for characterising the baking properties of wheat is as follows:

Clean the wheat sample, and determine the moisture content of the cleaned wheat. If the moisture content is within the range 15,0 % to 16,0 %, do not temper the wheat. If the moisture content is outside this range, adjust the moisture content to  $15,5 \pm 0,5$  %, at least three hours prior to milling.

Mill the wheat into flour using a Buehler laboratory mill MLU 202 or a Brabender Quadrumat Senior mill or similar equipment having the same characteristics.

Choose a milling procedure that yields a flour of minimum 72 % extraction, with an ash content of 0,50 to 0,60 % on dry matter basis.

Determine the ash content of the flour according to Annex II to Commission Regulation (EU) No  $234/2010^{(3)}$  and the moisture content according to this Regulation. Calculate the extraction rate by the equation:

 $E = (((100 - f) F)/(100 - w) W) \times 100 \%$ 

where:

| E | = | extraction rate,                                |
|---|---|-------------------------------------------------|
| f | = | moisture of the flour,                          |
| W | = | moisture content of the wheat,                  |
| F | = | mass of flour produced with moisture content f, |
| W | = | mass of wheat milled with moisture content w.   |

*Note:* Information concerning the ingredients and equipment to be used is published in Document T/77,300 of 31 March 1977 from the Instituut voor Graan, Meel en Brood, TNO — Postbus 15, Wageningen, Netherlands.

# PART IV

# Methodology of sampling and analyses for cereals

- 1. For each lot of cereals, the quality characteristics shall be established on the basis of a representative sample of the lot offered, consisting of samples taken at the rate of once every delivery for at least every 60 tonnes.
- 2. The reference methods to be used for determining the quality of cereals offered or tendered for, or placed in, intervention are those set out in Parts I, II and III of this Annex.
- 3. In cases of dispute, the paying agency shall have the necessary tests on the cereals in question carried out again, the cost being met by the losing party.

# PART V

# Price increases and reductions

# TABLE I

| Price increases for moisture content for cereals other than maize |                      |  |
|-------------------------------------------------------------------|----------------------|--|
| Moisture content(%)                                               | Increases(EUR/tonne) |  |
| Less than 12.5 to 12                                              | 0,5                  |  |
| Less than 12 to 11,5                                              | 1                    |  |
| Less than 11,5                                                    | 1.5                  |  |
| Price increases for moisture content for maize                    |                      |  |
| Moisture content(%)                                               | Increases(EUR/tonne) |  |
| Less than 12 to 11,5                                              | 0,5                  |  |
| Less than 11,5                                                    | 1                    |  |

# TABLE II

| Price reductions for moisture content for cereals other than maize |                      |  |
|--------------------------------------------------------------------|----------------------|--|
| Moisture content(%)                                                | Reduction(EUR/tonne) |  |
| More than 13,0 to 13,5                                             | 0,5                  |  |
| More than 13,5 to 14,0                                             | 1,0                  |  |
| More than 14,0 to 14,5                                             | 1,5                  |  |
| Price reductions for moisture content for maize                    |                      |  |
| Moisture content(%)                                                | Reduction(EUR/tonne) |  |
| More than 12,5 to 13,0                                             | 0,5                  |  |
| More than 13,0 to 13,5                                             | 1,0                  |  |

# TABLE III

Price increases for protein content of common wheat

| Protein content <sup>a</sup> (N × 5,7) | Price increase(EUR/tonne) |
|----------------------------------------|---------------------------|
| More than 12,0                         | 2,5                       |
| <b>a</b> As % of dry matter.           | •                         |

As 70 of dry matter.

# TABLE IV

| Protein content <sup>a</sup> (N × 5,7) | Price reduction(EUR/tonne) |
|----------------------------------------|----------------------------|
| Less than 11,5 to 11,0                 | 2,5                        |

# PART VI

# Calculation of prices increases and reductions

The price adjustments provided for in Article 26(1) shall be expressed in euro per tonne for offers or tenders for intervention by multiplying the price referred to in that Article by the sum of the established percentage increases or reductions, as follows:

- (a) where the moisture content of cereals offered or tendered for intervention is less than 12,0 % for maize and 12,5 % for other cereals, the price increases to be applied shall be those listed in Table I of Part V of this Annex. Where the moisture content of these cereals offered or tendered for intervention is higher than 12,5 % for maize and 13,0 % for other cereals, the price reductions to be applied shall be those listed in Table II of Part V of this Annex;
- (b) where the protein content of common wheat is higher than 12,0 %, the increases to be applied shall be those listed in Table III of Part V of this Annex. Where the protein content of common wheat is less than 11,5 %, the reductions to be applied shall be those listed in Table IV of Part V of this Annex.

# ANNEX II

# RICE

# PART I

#### Methodology of sampling and analyses for paddy rice

1. With a view to verifying the quality requirements as laid down in Part I of Annex II to Delegated Regulation (EU) 2016/1238, samples shall be taken by the paying agency in the presence of the operator or his/her duly authorised agent.

Three representative samples, each weighing a minimum of one kilogram, shall be collected. One each shall go to:

- (a) the operator;
- (b) the storage place where takeover is to take place;

(c) the paying agency.

To make up the representative samples, the number of individual samples to be taken shall be obtained by dividing the quantity of the lot by 10 tonnes. Each individual sample shall weigh the same. The representative samples shall be made up of the sum of the individual samples, divided by three.

The quality requirements shall be verified using the representative sample intended for the store where takeover is to take place.

2. Representative samples shall be taken of each part-delivery (by lorry, barge, railway wagon) under the conditions laid down in point 1.

Before its entry into the intervention store the examination of each part-delivery can be restricted to a check of the moisture content and impurity level and verification that no live insects are present. However, if it later becomes apparent when the check is finalised that a part-delivery does not satisfy the minimum quality requirements, the concerned quantity shall be refused for takeover. If the paying agency is able to check all the minimum quality requirements for each part-delivery before it enters the store, it shall refuse takeover of any part-delivery that fails to satisfy these requirements.

- 3. The control of the radioactivity level is performed only if the situation so requires and for a limited period.
- 4. In cases of dispute, the paying agency shall have the necessary tests on the paddy rice in question carried out again, the cost being met by the losing party.

A new analysis is performed by a laboratory recognised by the paying agency on the basis of a new representative sample made up, in equal parts, by samples preserved by the operator and by the paying agency. In cases where there were part-deliveries of the lot tendered, the result is given by the weighted average of the results of analyses of new representative samples taken for each of the part-deliveries.

# PART II

#### Prices increases and reductions

- 1. The price adjustments provided for in Article 26(1) shall be expressed in euro per tonne and apply to tenders for intervention by multiplying the price referred to in that Article by the sum of the established percentage increases in Tables I, II and III of this Part.
- 2. The price increases and decreases shall apply on the basis of the weighted average of the test results on the representative samples as defined in Part I of this Annex.

# TABLE I

#### **Price increases for moisture content**

| Moisture content(%)  | Increases(EUR/tonne) |
|----------------------|----------------------|
| Less than 12,5 to 12 | 0,75                 |
| Less than 12 to 11,5 | 1,5                  |

#### TABLE II

# Price reductions for moisture contentMoisture content(%)Reduction(EUR/tonne)More than 13,5 to 14,00,75More than 14,0 to 14,51,5

# TABLE III

| Price increases relating to milling yield |                                              |  |
|-------------------------------------------|----------------------------------------------|--|
| Yield of whole-grain milled paddy rice    | Price increases per yield point <sup>a</sup> |  |
| Above the basic yield                     | 0,75 % increase                              |  |
| Overall yield of milled paddy rice        | Price increases per yield point              |  |
| Above the basic yield                     | 0,60 % increase                              |  |

**a** To be applied where the milling yield of the rice differs from the basic milling yield for the variety concerned as set out in Part II of Annex II to Delegated Regulation (EU) 2016/1238.

# ANNEX III

### BEEF

# PART I

#### Conditions and controls for taking over

- 1. Products delivered shall be taken over subject to verification by the paying agency that they comply with the requirements laid down in Part I of Annex III to Delegated Regulation (EU) 2016/1238. In particular, a systematic check of the presentation, classification, weight and labelling of each carcass, half-carcass and quarter delivered shall be undertaken.
- 2. The failure to comply with the requirements laid down in Part I of Annex III to Delegated Regulation (EU) 2016/1238 shall result in rejection. Products rejected shall not be presented again for acceptance.
- 3. The outcome of the checks described in point 1 shall be systematically recorded by the paying agency.

#### PART II

### **Conversion coefficients**

| Conformation class/fat cover | Coefficient |
|------------------------------|-------------|
| U2                           | 1,058       |
| U3                           | 1,044       |

| U4 | 1,015 |
|----|-------|
| R2 | 1,015 |
| R3 | 1,000 |
| R4 | 0,971 |
| O2 | 0,956 |
| 03 | 0,942 |
| 04 | 0,914 |

# PART III

# Deboning

# I. General conditions governing deboning

- 1. Deboning may only be carried out in cutting plants approved and operating in accordance with the requirements of Regulation (EC) No 853/2004 of the European Parliament and of the Council<sup>(4)</sup>.
- 2. For the purposes of this Regulation 'deboning operations' means the physical operations for beef/veal as referred to in Annex II to Delegated Regulation (EU) No 906/2014.
- 3. Boned cuts must meet the requirements laid down in Part IV of this Annex.

# II. Contracts and specifications

- 1. Deboning shall be carried out under contract on terms laid down by the paying agencies, in accordance with their specifications and in compliance with the requirements of this Regulation.
- 2. The specifications of the paying agencies shall lay down the requirements to be met by cutting plants, shall specify the plant and equipment required and shall lay down detailed conditions covering deboning operations.

They shall in particular lay down detailed conditions specifying the method of preparation, trimming, packing, freezing and preservation of cuts with a view to their takeover by the paying agency.

#### III. Control and monitoring of deboning operations

The paying agencies shall take all the necessary measures to ensure that deboning operations are carried out in compliance with the requirements of this Regulation and with the contracts and specifications described in Section II of this Part.

In particular, the paying agencies shall put in place a system to ensure the continuous monitoring and verification of all deboning operations. The outcome of such monitoring and verification shall be recorded.

# IV. Storage of cuts

Cuts shall be stored in cold stores located in the territory of the Member State exercising jurisdiction over the paying agency.

# V. Costs of deboning operations

Contracts as referred to in Section II of this Part and payments made thereunder shall cover the costs of deboning operations as referred to in point 2 of Section I of this Part.

## VI. Time limits for deboning operations

Deboning, trimming, weighing, packaging and rapid freezing must be completed within 10 calendar days of slaughter. However, the paying agency may set shorter time limits.

# VII. Checks and rejection of products

- 1. When as a result of the checks provided for in Section III of this Part, products are found not to be in compliance with the requirements as laid down in this Regulation and with the contracts and specifications described in Section II of this Part they shall be rejected.
- 2. Without prejudice to the application of penalties, the paying agencies shall recover payments from the responsible parties for an amount equal to the price shown in Part V of this Annex for the cuts that have been rejected.

# PART IV

# Specifications for intervention deboning

- 1. HINDQUARTER CUTS
- 1.1. Description of cuts
- 1.1.1. Intervention shank (code INT 11)

Cutting and deboning: remove by a cut passing through the stifle joint and separating from the topside and the silverside by following the natural seam, leaving the heel muscle attached to the shank. Remove shank bones (tibia and hock).

Trimming: trim sinew tips back to the meat.

Wrapping and packing: these cuts must be individually wrapped before packing in cartons.

1.1.2. Intervention thick flank (code INT 12)

Cutting and deboning: separate from the topside by a straight cut down to and along the line of the femur and from the silverside by continuing the cut down in the line of the natural seam; the cap must be left naturally attached.

Trimming: remove the patella, the joint capsule and tendon; the external fat cover must not exceed one centimetre at any point.

#### 1.1.3. Intervention topside (code INT 13)

Cutting and deboning: separate from the silverside and the shank by a cut following the line of the natural seam and detach from the femur; remove the aitchbone.

Trimming: remove the pizzle butt, the adjacent gristle and the scrotal (superficial inguinal) gland; remove the cartilage and connective tissues associated with the pelvic bone; the external fat cover must not exceed one centimetre at any point.

| Status: Point in time view as at 18/05/2016.                                         |  |
|--------------------------------------------------------------------------------------|--|
| Changes to legislation: There are currently no known outstanding effects for the     |  |
| Commission Implementing Regulation (EU) 2016/1240. (See end of Document for details) |  |

# 1.1.4. Intervention silverside (code INT 14)

Cutting and deboning: separate from the topside and the shank by a cut following the line of the natural seam; remove the femur.

Trimming: remove the heavy cartilage adjacent to the bone joint, the popiteal lymph node, attached fat and tendon; the external fat cover must not exceed one centimetre at any point.

# 1.1.5. Intervention fillet (code INT 15)

Cutting: remove entire length of fillet by freeing the head (butt end) from the hip bone (ilium) and by tracing along the fillet adjacent to the vertebrae, thereby freeing the fillet from the loin.

Trimming: remove gland and de-fat. Leave the silverskin and chain muscle intact and fully attached.

# 1.1.6. Intervention rump (code INT 16)

Cutting and deboning: separate from the silverside/thick flank by a straight cut from a point approximately five centimetres from the posterior edge of the fifth sacral vertebra, passing approximately five centimetres from the anterior edge of the aitchbone, taking care not to cut through the thick flank.

Separate from the loin by a cut between the last lumbar and first sacral vertebrae, clearing the anterior edge of the pelvic bone. Remove bones and cartilage.

Trimming: remove the pocket of fat on the internal surface below the eye muscle. The external fat cover must not exceed one centimetre at any point.

1.1.7. Intervention striploin (code INT 17)

Cutting and deboning: separate from the rump by a straight cut between the last lumbar and the first sacral vertebrae. Separate from the fore-rib (five bone) by a straight cut between the eleventh and tenth ribs. Remove the backbones cleanly. Remove the ribs and feather bones by sheeting out.

Trimming: remove any species of cartilage left after deboning. The tendon must be removed. The external fat cover must not exceed one centimetre at any point.

1.1.8. Intervention flank (code INT 18)

Cutting and deboning: remove the full flank from the eight-rib straight-cut hindquarter by a cut from the point where the flank has been laid back, following the natural seam down around the surface of the hind muscles to a point which is horizontal to the middle of the last lumbar vertebra.

Continue the cut downwards in a straight line parallel to the fillet, through the thirteenth to the sixth rib inclusive along a line running parallel to the dorsal edge of the vertebral column, so that the entire downward cut is no more than five centimetres from the lateral tip of the eye muscle.

Remove all bones and cartilage by sheeting out. The whole flank must remain in one piece.

Trimming: remove the coarse connective tissue sheath covering the goose skirt, leaving the goose skirt intact. Trim fat so that the overall percentage of visible (external and interstitial) fat does not exceed 30 %.

1.1.9. Intervention fore-rib (five bone) (code INT 19)

Cutting and deboning: this cut must be separated from the striploin by a straight cut between the eleventh and tenth ribs and must include the sixth to tenth ribs inclusive. Remove the intercostal muscles and pleura in a thin sheet with rib bones. Remove backbone and cartilage, including the tip of the scapula.

Trimming: remove the backstrap (ligamentum nuchae). The external fat cover must not exceed one centimetre at any point. The cap must be left attached.

# 2. FOREQUARTER CUTS

2.1. Description of cuts

2.1.1. Intervention shin (code INT 21)

Cutting and deboning: remove by a cut around the joint separating the shinbone (radius) and clod-bone (humerus). Remove the shinbone (radius).

Trimming: trim sinew tips back to the meat.

Shins must not be packed with shanks.

# 2.1.2. Intervention shoulder (code INT 22)

Cutting and deboning: separate the shoulder from the forequarter by cutting in a line following the natural seam around the edge of the shoulder and the cartilage at the tip of the scapula, continuing around the seam so that the shoulder is lifted from its natural pocket. Remove the scapula. The blade muscle under the scapula must be laid back but left attached so as to allow clean removal of the bone. Remove the clod-bone (humerus).

Trimming: remove cartilage, tendons and joint capsules; trim fat so that the overall percentage of visible (external and interstitial) fat does not exceed 10 %.

2.1.3. Intervention brisket (code INT 23)

Cutting and deboning: separate from the forequarter by cutting in a straight line perpendicular to the middle of the first rib. Remove intercostal muscles and pleura by 'sheeting out', with ribs, breastbone and cartilage. Deckle to be left attached to the brisket. Fat underlying the deckle and the sternum must be removed.

Trimming: trim fat so that the overall percentage of visible (external and interstitial) fat does not exceed 30 %.

2.1.4. Intervention forequarter (code INT 24)

Cutting and deboning: the cut remaining after removal of the brisket, shoulder and shin is classed as forequarter.

Remove rib bones by sheeting out. Neck bones must be removed cleanly.

The chain muscle must be left attached to this cut.

Trimming: tendons, joint capsules and cartilage to be removed. Trim fat so that the overall percentage of visible (external and interstitial) fat does not exceed 10 %.

# PART V

# Individual prices of rejected intervention cuts

| (EUR/tonne)                                                                              |        |
|------------------------------------------------------------------------------------------|--------|
| Intervention fillet                                                                      | 22 000 |
| Intervention striploin                                                                   | 14 000 |
| Intervention topside, Intervention rump                                                  | 10 000 |
| Intervention silverside, Intervention thick flank, Intervention forerib (with five ribs) | 8 000  |
| Intervention shoulder, Intervention forequarter                                          | 6 000  |
| Intervention brisket, Intervention shank,<br>Intervention shin                           | 5 000  |
| Intervention flank                                                                       | 4 000  |

# ANNEX IV

# BUTTER

# PART I

# Sampling for chemical and microbiological analysis and sensory evaluation

# 1. Chemical and microbiological analysis

| Quantity of butter(kg)  | Minimum number of samples(> 100 g)  |
|-------------------------|-------------------------------------|
| $\leq 1\ 000$           | 2                                   |
| > 1 000 ≤ 5 000         | 3                                   |
| $> 5\ 000 \le 10\ 000$  | 4                                   |
| > 10 000 ≤ 15 000       | 5                                   |
| $> 15\ 000 \le 20\ 000$ | 6                                   |
| $> 20\ 000 \le 25\ 000$ | 7                                   |
| > 25 000                | 7 + 1 per 25 000 kg or part thereof |

Sampling for microbiological analysis must be carried out aseptically.

Up to five samples of 100 g may be combined into one sample for analysis after thorough mixing.

The samples must be taken randomly from different parts of each lot before or at the time of entry into the cold store designated by the paying agency.

Preparation of composite butter sample (chemical analysis):

- (a) using a clean, dry butter trier or similar suitable instrument, extract a core of butter of at least 30 g and place in a sample container. The composite sample must then be sealed and forwarded to the laboratory for analysis;
- (b) at the laboratory the composite sample is to be warmed in the original unopened container to 30 °C and shaken frequently until a homogeneous fluid emulsion free of unsoftened pieces is obtained. The container should be one half to two thirds full.

Two samples per year per producer offering butter for intervention must be analysed for nonmilk fat.

# 2. Sensory evaluation

| Quantity of butter(kg) | Minimum number of samples           |
|------------------------|-------------------------------------|
| $1\ 000 \le 5\ 000$    | 2                                   |
| > 5 000 ≤ 25 000       | 3                                   |
| > 25 000               | 3 + 1 per 25 000 kg or part thereof |

Following a trial storage period of 30 days, samples are to be taken randomly from different parts of each lot between the 30th and the 45th day following delivery of the butter and graded.

Each sample must be assessed individually in accordance with Annex IV to Regulation (EC) No 273/2008. No resampling or re-evaluation is allowed.

# 3. Guidelines to be followed where samples show defects

- (a) chemical and microbiological analysis:
- (i) where individual samples are analysed, one sample showing a single defect out of five to 10 samples or two samples each showing a single defect out of 11 to 15 samples may be allowed. Where a sample shows a defect, two new samples must be taken from either side of the sample showing the defect and checked for the parameter in question. Where neither sample meets the specification, the quantity of butter between the original two samples on either side of the sample showing the defect must be rejected from the quantity offered.

Quantity to be rejected where the new sample shows a defect:

- (ii) where composite samples are analysed and found to show defects in respect of one parameter, the quantity represented by the composite sample concerned is to be rejected from the quantity offered. The quantity represented by one composite sample may be determined by subdividing the quantity before samples are taken randomly from each part thereof;
- (b) sensory evaluation: where a sample fails the sensory evaluation, the quantity of butter between two neighbouring samples on either side of the sample failing is to be rejected from the quantity of the lot,
- (c) where samples show a sensory defect and either a chemical or a microbiological defect, the whole quantity is to be rejected.

# PART II

# Delivery and packaging of butter

- 1. Butter shall be delivered in blocks and packed in new, strong material in such a way as to ensure it is protected throughout transportation, entry into storage, storage and removal from storage.
- 2. The packing shall show at least the following particulars, where appropriate in code:
- (a) the approval number identifying the factory and the Member State of production;
- (b) the date of production;
- (c) the production batch number and the package number; the package number may be replaced by a pallet number marked on the pallet;
- (d) the words 'sweet cream' if the butter has a pH of 6,2 or higher.
- 3. The storekeeper shall keep a register in which the particulars referred to in point 2 are recorded on the date of entry into storage.

# ANNEX V

# SKIMMED MILK POWDER

# PART I

# Sampling and analysis of skimmed-milk powder offered for intervention

- 1. Samples per lot shall be taken in accordance with the procedure laid down in International Standard ISO 707. However, paying agencies may use another method of sampling provided that it complies with the principles of that standard.
- 2. Number of packages to be selected for taking samples for analysis:
- (a) lots containing up to 800 25-kg bags: at least eight;
- (b) lots containing more than 800 25-kg bags: at least eight, plus one for each additional 800 bags or fraction thereof.
- 3. Weight of sample: samples of at least 200 g are to be taken from each package.
- 4. Grouping of samples: no more than nine samples are to be combined in a global sample.
- 5. Analysis of samples: each global sample is to undergo an analysis to verify all the quality characteristics laid down in Part II of Annex V to Delegated Regulation (EU) 2016/1238.
- 6. Where samples show defects:
- (a) where a composite sample shows a defect with regard to one parameter, the quantity from which the sample came is rejected;

- (b) where a composite sample shows a defect with regard to more than one parameter, the quantity from which the sample came is rejected and samples are taken from the remaining quantities from the same plant; the analysis of those samples shall be decisive. In that case:
  - the number of samples laid down in point 2 is doubled,
  - where a composite sample shows a defect with regard to one or more parameters, the quantity from which the sample came is rejected.

# PART II

# Delivery and packaging of skimmed milk powder

- 1. Skimmed milk powder shall be packed in new, clean, dry and intact bags meeting the following requirements:
- (a) the bags shall have at least three layers, which together correspond to at least 420 J/  $m^2$  TEA average;
- (b) the second layer shall be covered with a layer of polyethylene of at least  $15 \text{ g/m}^2$ ;
- (c) inside the paper layers, a polyethylene bag at least 0,08 mm thick shall be fused to the bottom;
- (d) bags shall conform to standard EN 770;
- (e) when filling, the powder should be well pressed down. Loose powder must on no account be allowed to penetrate between the various layers.
- 2. The bags shall show the following particulars, where appropriate in code:
- (a) the approval number identifying the factory and the Member State of production;
- (b) the date or, where appropriate, the week of production;
- (c) the number of the production batch;
- (d) the description 'spray skimmed-milk powder'.
- 3. The storekeeper shall keep a register in which the particulars referred to in point 2 are recorded on the date of entry into storage.

- (1) Commission Regulation (EC) No 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs (OJ L 364, 20.12.2006, p. 5).
- (2) Commission Regulation (EC) No 401/2006 of 23 February 2006 laying down the methods of sampling and analysis for the official control of the levels of mycotoxins in foodstuffs (OJ L 70, 9.3.2006, p. 12).
- (3) Commission Regulation (EU) No 234/2010 of 19 March 2010 laying down certain detailed rules for the application of Council Regulation (EC) No 1234/2007 on the granting of export refunds on cereals and the measures to be taken in the event of disturbance on the market for cereals (OJ L 72, 20.3.2010, p. 3).
- (4) Regulation (EC) No 853/2004 of the European Parliament and of the Council of 29 April 2004 laying down specific hygiene rules for food of animal origin (OJ L 139, 30.4.2004, p. 55).

# Status:

Point in time view as at 18/05/2016.

# Changes to legislation:

There are currently no known outstanding effects for the Commission Implementing Regulation (EU) 2016/1240.