Commission Regulation (EU) 2017/2400 of 12 December 2017 implementing Regulation (EC) No 595/2009 of the European Parliament and of the Council as regards the determination of the CO2 emissions and fuel consumption of heavy-duty vehicles and amending Directive 2007/46/EC of the European Parliament and of the Council and Commission Regulation (EU) No 582/2011 (Text with EEA relevance)

ANNEX IX

VERIFYING TRUCK AUXILIARY DATA

1. Introduction

This Annex describes the provisions regarding the power consumption of auxiliaries for heavy duty vehicles for the purpose of the determination of vehicle specific CO₂ emissions.

[^{F1}The power consumption of the following auxiliaries shall be considered within the simulation tool by using technology specific average standard power values:]

Textual Amendments

- **F1** Substituted by Commission Regulation (EU) 2019/318 of 19 February 2019 amending Regulation (EU) 2017/2400 and Directive 2007/46/EC of the European Parliament and of the Council as regards the determination of the CO2 emissions and fuel consumption of heavy-duty vehicles (Text with EEA relevance).
- (a) Fan
- (b) Steering system
- (c) Electric system
- (d) Pneumatic system
- (e) Air Conditioning (AC) system
- (f) Transmission Power Take Off (PTO)

[^{F1}The standard values are integrated in the simulation tool and automatically used by choosing the corresponding technology.]

2. Definitions

For the purposes of this Annex the following definitions shall apply:

- (1) 'Crankshaft mounted fan' means a fan installation where the fan is driven in the prolongation of the crankshaft, often by a flange;
- (2) 'Belt or transmission driven fan' means a fan that is installed in a position where additional belt, tension system or transmission is needed;
- (3) 'Hydraulic driven fan' means a fan propelled by hydraulic oil, often installed away from the engine. A hydraulic system with oil system, pump and valves are influencing losses and efficiencies in the system;
- (4) 'Electrically driven fan' means a fan propelled by an electric motor. The efficiency for complete energy conversion, included in/out from battery, is considered;
- (5) 'Electronically controlled visco clutch' means a clutch in which a number of sensor inputs together with SW logic are used to electronically actuate the fluid flow in the visco clutch;
- (6) 'Bimetallic controlled visco clutch' means a clutch in which a bimetallic connection is used to convert a temperature change into mechanical displacement. The mechanical displacement is then working as an actuator for the visco clutch;

- (7) 'Discrete step clutch' means a mechanical device where the grade of actuation can be made in distinct steps only (not continuous variable).
- (8) 'On/off clutch' means a mechanical clutch which is either fully engaged or fully disengaged;
- (9) 'Variable displacement pump' means a device that converts mechanical energy to hydraulic fluid energy. The amount of fluid pumped per revolution of the pump can be varied while the pump is running;
- (10) 'Constant displacement pump' means a device that converts mechanical energy to hydraulic fluid energy. The amount of fluid pumped per revolution of the pump cannot be varied while the pump is running;
- (11) 'Electric motor control' means the use of an electric motor to propel the fan. The electrical machine converts electrical energy into mechanical energy. Power and speed are controlled by conventional technology for electric motors;
- (12) 'Fixed displacement pump (default technology)' means a pump having an internal limitation of the flow rate;
- (13) 'Fixed displacement pump with electronic control' means a pump using an electronic control of the flow rate;
- (14) 'Dual displacement pump' means a pump with two chambers (with the same or different displacement) which can be combined or only one of these is used. It is characterised by an internal limitation of flow rate;
- (15) 'Variable displacement pump mech. controlled' means a pump where the displacement is mechanically controlled internally (internal pressure scales);
- (16) 'Variable displacement pump elec. controlled' means a pump where the displacement is mechanically controlled internally (internal pressure scales). Additionally, the flow rate is elec. controlled by a valve;
- (17) [^{F1}'Electric steering pump' means a hydraulic pump driven by an electric motor;]
- (18) 'Baseline air compressor' means a conventional air compressor without any fuel saving technology;
- (19) 'Air compressor with Energy Saving System (ESS)' means a compressor reducing the power consumption during blow off, e.g. by closing intake side, ESS is controlled by system air pressure;
- (20) 'Compressor clutch (visco)' means a disengageable compressor where the clutch is controlled by the system air pressure (no smart strategy), minor losses during disengaged state caused by visco clutch;
- (21) 'Compressor clutch (mechanically)' means a disengageable compressor where the clutch is controlled by the system air pressure (no smart strategy);
- (22) 'Air Management System with optimal regeneration (AMS)' means an electronic air processing unit that combines an electronically controlled air dryer for optimized air regeneration and an air delivery preferred during overrun conditions (requires a clutch or ESS).
- (23) 'Light Emitting Diodes (LED)' mean semiconductor devices that emit visible light when an electrical current passes through them.

- (24) 'Air conditioning system' means a system consisting of a refrigerant circuit with compressor and heat exchangers to cool down the interior of a truck cab or bus body.
- (25) 'Power take-off (PTO)' means a device on a transmission or an engine to which an auxiliary driven device, e.g., a hydraulic pump, can be connected; a power take-off is usually optional;
- (26) 'Power take-off drive mechanism' means a device in a transmission that allows the installation of a power take-off (PTO);
- (27) 'Tooth clutch' means a (manoeuvrable) clutch where torque is transferred mainly by normal forces between mating teeth. A tooth clutch can either be engaged or disengaged. It is operated in load-free conditions only (e.g. at gear shifts in a manual transmission);
- (28) 'Synchroniser' means a type of tooth clutch where a friction device is used to equalise the speeds of the rotating parts to be engaged;
- (29) 'Multi-disc clutch' means a clutch where several friction linings are arranged in parallel whereby all friction pairs get the same pressing force. Multi-disc clutches are compact and can be engaged and disengaged under load. They may be designed as dry or wet clutches;
- (30) 'Sliding wheel' means a gearwheel used as shift element where the shifting is realized by moving the gearwheel on its shaft into or out of the gear mesh of the mating gear.
- 3. Determination of technology specific average standard power values
- 3.1 Fan

For the fan power the standard values shown in Table 1 shall be used depending on mission profile and technology:

TABLE 1

Fan drive	Fan	Fan power consumption [W]									
cluster	control	Long haul	Regional delivery	Urban delivery	Municipal utility	Construction					
Crankshaft mounted	Electronicall controlled visco clutch	y618	671	516	566	1 037					
	Bimetallic controlled visco clutch	818	871	676	766	1 277					
	Discrete step clutch	668	721	616	616	1 157					
	On/off cluch	718	771	666	666	1 237					
Belt driven or driven via transmission	Electronic controlled visco clutch	989	1 044	833	933	1 478					

Mechanical power demand of the fan

	Bimetallic controlled visco clutch	1 189	1 244	993	1 133	1 718
	Discrete step clutch	1 039	1 094	983	983	1 598
	On/off cluch	1 089	1 144	1 033	1 033	1 678
Hydraulically driven	yVariable displacemen pump	938 t	1 155	832	917	1 872
	Constant displacement pump	1 200 t	1 400	1 000	1 100	2 300
Electrically driven	Electronicall	у700	800	600	600	1 400

If a new technology within a fan drive cluster (e.g. crankshaft mounted) cannot be found in the list the highest power values within that cluster shall be taken. If a new technology cannot be found in any cluster the values of the worst technology at all shall be taken (hydraulic driven constant displacement pump)

3.2 Steering System

For the steering pump power the standard values [W] shown in Table 2 shall be used depending on the application in combination with correction factors:

[^{F1}TABLE 2

Ide of v	entifi vehi	icatio cle	n		Ste	erin	g po	wer	cons	ump	tion	P [V	V]						
configuration NumbereChassischw of configuriziong				ch Vie ungis	daille ng haul sih le			Regional delivery		Urban delivery		Municipal utility			Co	nstru	uction		
axl	es	8	ma lad ma (to	xim len lss ns)	unn +F	B	S	U + F	B	S	U + F	B	S	U + F	B	S	U + F	В	S
2	4 × 2	Rig lorr + (Tra	iđ≯ y7,5 - c1t0r)	1				240	20	20	220	20	30						
		Rigi lorr + (Tra	iđ≯ y10 - c1t2∂r)	2	340	30	0	290	30	20	260	20	30						
		Rig lorr	i¢ y12	3				310	30	30	280	30	40						

Mechanical power demand of steering pump

		+ (Tra	- ctt6r)																
		Rig lorr	i¢ y16	4	510	100	0	490	40	40	430	40	50	430	30	50	580	30	70
		Tra	ctor 16	5	600	120	0	540	90	40							640	50	80
	4 × 4	Rig lorr	iđ≯ y7,5 - 16	6															
		Rig lorr	i¢ y16	7	—														
		Tra	tor 16	8	—							· · · · · · · · · · · · · · · · · · ·				·			
3	6 × 2/2 - 4	Rig lorr	idall Y	9	600	120	0	490	60	40	440	50	50	430	30	50	640	50	80
		Tra	ctadit	10	450	120	0	440	90	40							640	50	80
	6 × 4	Rig lorr	idall y	11	600	120	0	490	60	40				430	30	50	640	50	80
		Tra	ctadit	12	450	120	0	440	90	40							640	50	80
	6 × 6	Rig lorr	idall y	13	—					1		1	1			1			<u>.</u>
		Tra	ctadit	14															
4	$\frac{8}{2}$	Rig lorr	idall V	15	_														
	$\frac{8 \times 4}{4}$	Rig lorr	idall Y	16													640	50	80
	8 × 6/8	Rig ⊲loarr	idall y	17	—				L			1	1		1			1	1

where:

U = F =	 Unloaded – pumping oil without steering pressure demand Friction – friction in the pump
B :	= Banking – steer correction due to banking of the road or side wind
S	 Steering – steer pump power demand due to cornering and manoeuvring.]

To consider the effect of different technologies, technology depending scaling factors as shown in Table 3 and Table 4 shall be applied.

TABLE 3

Scaling factors depending on technology Factor c1 depending on technology

Technology	C1 II + F	C1 D	61.0
теенногоду	C 1,0 + F	CI,B	e _{1,8}
Fixed displacement	1	1	1
Fixed displacement with electronical control	0,95	1	1
Dual displacement	0,85	0,85	0,85
Variable displacement, mech. controlled	0,75	0,75	0,75
Variable displacement, elec. controlled	0,6	0,6	0,6
Electric	0	1,5/ η_{alt}	$1/\eta_{alt}$

with η_{alt} = alternator efficiency = const. = 0,7

 $[{}^{\rm F1}{\rm If}$ a new technology is not listed, the technology 'fixed displacement' shall be considered in the simulation tool.]

TABLE 4

	Factor c2 depending on number of steered axles														
Nun of	Numbleong haul of			Regional delivery			Urban delivery			Municipal utility			Construction		
steer axle	reel _{2,U} s _{+F}	с _{2,В}	¢ _{2,S}	c _{2,U} +F	с _{2,В}	c _{2,S}	c _{2,U} +F	с _{2,В}	c _{2,S}	c _{2,U} +F	с _{2,В}	¢ _{2,S}	c _{2,U} +F	с _{2,В}	c _{2,S}
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
2	1	0,7	0,7	1,0	0,7	0,7	1,0	0,7	0,7	1,0	0,7	0,7	1,0	0,7	0,7
3	1	0,5	0,5	1,0	0,5	0,5	1,0	0,5	0,5	1,0	0,5	0,5	1,0	0,5	0,5
4	1,0	0,5	0,5	1,0	0,5	0,5	1,0	0,5	0,5	1,0	0,5	0,5	1,0	0,5	0,5

Scaling factor depending on number of steered axles

The final power demand is calculated by:

If different technologies are used for multi-steered axles, the mean values of the corresponding factors c1 shall be used.

The final power demand is calculated by:

$$P_{tot} = \sum_{i} (P_{U+F} * mean(c_{1,U+F}) * (c_{2i,U+F})) + \sum_{i} (P_B * mean(c_{1,B}) * (c_{2i,B})) + \sum_{i} (P_S * mean(c_{1,S}) * (c_{2i,S}))$$

where:

P_{tot}	= Total power demand [W]
P	= Power demand [W]
c_1	= Correction factor depending on technology
c_2	= Correction factor depending on number of steered axles

U+F =	Unloaded + friction [-]
<i>B</i> =	Banking [-]
<i>S</i> =	Steering [-]
<i>i</i> =	Number of steered axles [-]

3.3 Electric system

For the electric system power the standard values [W] as shown in Table 5 shall be used depending on the application and technology in combination with the alternator efficiencies:

TABLE 5

Technologies **Electric power consumption [W]** influencing Regional Municipal Long haul Urban Construction electric delivery delivery utility power consumption 1 000 1 200 1 000 1 000 1 000 Standard technology electric power [W] - 50 - 50 - 50 LED main - 50 - 50 front headlights

Electrical power demand of electric system

To derive the mechanical power, an alternator technology dependent efficiency factor as shown in Table 6 shall be applied.

TABLE 6

Alternator efficiency factor

Alternator	Efficiency η _{al}	t			
(power conversion) technologiesC efficiency values for specific technologies	Long haul Generic	Regional delivery	Urban delivery	Municipal utility	Construction
Standard alternator	0,7	0,7	0,7	0,7	0,7

[^{F1}If the technology used in the vehicle is not listed, the technology 'standard alternator' shall be considered in the simulation tool.]

The final power demand is calculated by:

$$P_{tot} = \frac{P_{el}}{\eta_{ab}}$$

where:

 P_{tot} = Total power demand [W]

$P_{el} =$	Electrical power demand [W]
η_{alt} =	Alternator efficiency [-]

3.4 Pneumatic system

For pneumatic systems working with over pressure the standard power values [W] as shown in Table 7 shall be used depending on application and technology.

TABLE 7

Size of air	Technology	Long Haul	Regional Delivery	Urban Delivery	Municipal Utility	Construction
supply		Pmean	Pmean	Pmean	Pmean	Pmean
		[W]	[W]	[W]	[W]	[W]
small	Baseline	1 400	1 300	1 200	1 200	1 300
displ. \leq 250 cm ³ 1 cyl./2 cyl.	+ ESS	- 500	- 500	- 400	- 400	- 500
	+ visco clutch	- 600	- 600	- 500	- 500	- 600
	+ mech. clutch	- 800	- 700	- 550	- 550	- 700
	+ AMS	- 400	- 400	- 300	- 300	- 400
medium	Baseline	1 600	1 400	1 350	1 350	1 500
250 cm^3	+ ESS	- 600	- 500	- 450	- 450	- 600
$< \text{displ.} \leq$ 500 cm ³ 1 cyl/2 cyl.	+ visco clutch	- 750	- 600	- 550	- 550	- 750
1-stage	+ mech. clutch	- 1 000	- 850	- 800	- 800	- 900
	+ AMS	- 400	- 200	- 200	- 200	- 400
medium	Baseline	2 100	1 750	1 700	1 700	2 100
250 cm^3	+ ESS	-1 000	- 700	- 700	- 700	-1 100
500 cm^3 1 cyl./2 cyl.	+ visco clutch	- 1 100	- 900	- 900	- 900	- 1 200
2-stage	+ mech. clutch	- 1 400	- 1 100	- 1 100	- 1 100	- 1 300
	+ AMS	- 400	- 200	- 200	- 200	- 500
large	Baseline	4 300	3 600	3 500	3 500	4 100
displ. $>$ 500 cm ³	+ ESS	-2 700	-2300	-2 300	-2 300	-2 600
1 cyl./2 cyl. 1-stage/2-	+ visco clutch	- 3 000	-2 500	-2 500	-2 500	- 2 900
stage	+ mech. clutch	- 3 500	- 2 800	- 2 800	- 2 800	- 3 200

Mechanical power demand of pneumatic systems (over pressure)

Document Generated. 2027 01 02
Changes to legislation: There are outstanding changes not yet made to Commission Regulation
(EU) 2017/2400. Any changes that have already been made to the legislation appear in the content
and are referenced with annotations. (See end of Document for details) View outstanding changes

+ AMS	- 500	- 300	- 200	- 200	- 500

For pneumatic systems working with vacuum (negative pressure) the standard power values [W] as shown in Table 8 shall be used.

TABLE 8

Mechanical power demand of pneumatic systems (vacuum pressure)

	Long Haul	Regional Delivery	Urban Delivery	Municipal Utility	Construction	
	Pmean	Pmean	Pmean	Pmean	Pmean	
	[W]	[W]	[W]	[W]	[W]	
Vacuum pump	190	160	130	130	130	

Fuel saving technologies can be considered by subtracting the corresponding power demand from the power demand of the baseline compressor.

The following combinations of technologies are not considered:

- (a) ESS and clutches
- (b) Visco clutch and mechanical clutch

In case of a two-stage compressor, the displacement of the first stage shall be used to describe the size of the air compressor system

3.5 Air Conditioning system

For vehicles having an air conditioning system, the standard values [W] as shown in Table 9 shall be used depending on the application.

[^{F1}TABLE 9

Identification of vehicle configuration				AC power consumption [W]					
Numbe of axles	r Axle configu	Chassis r ætiofi gu	Technic r atio miss maxim laden mass (tons)	aNyhicle sil gh oup um	Long haul	Region: delivery	alUrban v delivery	Munici utility	p & Onstruction
2	4 × 2	Rigid lorry + (Tractor)	> 7,5 - 10	1		150	150		
		Rigid lorry + (Tractor)	> 10 - 12	2	200	200	150		

Mechanical power demand of AC system

<i>Changes to legislation:</i> There are outstanding changes not yet made to Commission Regulation
(EU) 2017/2400. Any changes that have already been made to the legislation appear in the content
and are referenced with annotations. (See end of Document for details) View outstanding changes

		Rigid lorry + (Tractor)	>12 - 16	3		200	150		
		Rigid lorry	> 16	4	350	200	150	300	200
		Tractor	> 16	5	350	200			200
	4 × 4	Rigid lorry	> 7,5 - 16	6	—		I	1	1
		Rigid lorry	>16	7					
		Tractor	> 16	8	—				
3	$6 \times 2/2 \\ -4$	Rigid lorry	all	9	350	200	150	300	200
		Tractor	all	10	350	200			200
	6 × 4	Rigid lorry	all	11	350	200		300	200
		Tractor	all	12	350	200			200
	6 × 6	Rigid lorry	all	13					
		Tractor	all	14					
4	8 × 2	Rigid lorry	all	15					
	8 × 4	Rigid lorry	all	16					200
	$8 \times 6/8 \times 8$	Rigid lorry	all	17	—]			·	

3.6 Transmission Power Take-Off (PTO)

For vehicles with PTO and/or PTO drive mechanism installed on the transmission, the power consumption shall be considered by determined standard values. The corresponding standard values represent these power losses in usual drive mode when the PTO is switched off/ disengaged. [^{F1}Application related power consumptions at engaged PTO are added by the simulation tool and are not described in the following.]

TABLE 10

Mechanical power demand of switched off/disengaged power take-off

Design variants regarding power losses		
(in comparison to a transmission without		
PTO and / or PTO drive mechanism)		
Additional drag loss relevant parts	PTO incl. drive	only PTO drive
- ×	mechanism	mechanism

Shafts / gear wheels	Other elements	Power loss [W]	Power loss [W]
only one engaged gearwheel positioned above the specified oil level (no additional gearmesh)			0
only the drive shaft of the PTO	tooth clutch (incl. synchroniser) or sliding gearwheel	50	50
only the drive shaft of the PTO	multi-disc clutch	1 000	1 000
only the drive shaft of the PTO	multi-disc clutch and oil pump	2 000	2 000
drive shaft and/or up to 2 engaged gearwheels	tooth clutch (incl. synchroniser) or sliding gearwheel	300	300
drive shaft and/or up to 2 engaged gearwheels	multi-disc clutch	1 500	1 500
drive shaft and/or up to 2 engaged gearwheels	multi-disc clutch and oil pump	3 000	3 000
drive shaft and/or more than 2 engaged gearwheels	tooth clutch (incl. synchroniser) or sliding gearwheel	600	600
drive shaft and/or more than 2 engaged gearwheels	multi-disc clutch	2 000	2 000
drive shaft and/or more than 2 engaged gearwheels	multi-disc clutch and oil pump	4 000	4 000

Changes to legislation: There are outstanding changes not yet made to Commission Regulation (EU) 2017/2400. Any changes that have already been made to the legislation appear in the content and are referenced with annotations. View outstanding changes Changes and effects yet to be applied to the whole legislation item and associated provisions Signature words omitted by S.I. 2022/1273 reg. 82(18) Annex 5 Appendix 6 point 1.3 substituted by S.I. 2022/1273 reg. 83(4)(b)(i) _ Annex 5 Appendix 6 point 1.4.1 image substituted by S.I. 2022/1273 reg. 83(4)(b) (iiii)(aa) Annex 5 Appendix 6 point 1.5.1 image substituted by S.I. 2022/1273 reg. 83(4)(b) (iv)(aa) Annex 5 Appendix 4 point 7.4 word substituted by S.I. 2022/1273 reg. 83(4)(a) Annex 5 Appendix 6 point 2.1 word substituted by S.I. 2022/1273 reg. 83(4)(b)(v) Annex 5 Appendix 6 point 1.4.1 words omitted by S.I. 2022/1273 reg. 83(4)(b)(iii) (bb)Annex 5 Appendix 6 point 1.5.1 words omitted by S.I. 2022/1273 reg. 83(4)(b)(iv) (bb)Annex 5 Appendix 6 point 1.4 words substituted by S.I. 2022/1273 reg. 83(4)(b)(ii) Annex 5 Appendix 6 point 2.1 table words substituted by S.I. 2022/1273 reg. 83(4) (b)(vi) Annex 10 Appendix 4 point 1.1 word substituted by S.I. 2022/1273 reg. 83(8)(d)(i) Annex 10 Appendix 1 words substituted by S.I. 2022/1273 reg. 83(8)(c) Annex 10 Appendix 4 point 1.1 table words substituted by S.I. 2022/1273 reg. 83(8) (d)(ii)Annex 7 Appendix 5 point 1.3 substituted by S.I. 2022/1273 reg. 83(6)(c)(i) Annex 7 Appendix 5 point 1.4.1 image substituted by S.I. 2022/1273 reg. 83(6)(c) (iiii)(aa) Annex 7 Appendix 1s. 1 point 000.5 word substituted by S.I. 2022/1273 reg. 83(6) (b)(ii)Annex 7 Appendix 1 words inserted by S.I. 2022/1273 reg. 83(6)(b)(i)(aa) Annex 7 Appendix 1 words omitted by S.I. 2022/1273 reg. 83(6)(b)(i)(bb) Annex 7 Appendix 5 point 1.4.1 words omitted by S.I. 2022/1273 reg. 83(6)(c)(iii) (bb)Annex 7 Appendix 5 point 1.4 words substituted by S.I. 2022/1273 reg. 83(6)(c)(ii) Annex 7 Appendix 5 point 2.1 words substituted by S.I. 2022/1273 reg. 83(6)(c)(iv) Annex 7 Appendix 5 point 2.1 table words substituted by S.I. 2022/1273 reg. 83(6) (c)(v)Annex 8 Appendix 8 point 1.3 substituted by S.I. 2022/1273 reg. 83(7)(d)(i) Annex 8 Appendix 8 point 1.4.1 image substituted by S.I. 2022/1273 reg. 83(7)(d) (iii)(aa) Annex 8 Appendix 4 table 11 word omitted by S.I. 2022/1273 reg. 83(7)(c)(i) Annex 8 Appendix 4 table 13 word omitted by S.I. 2022/1273 reg. 83(7)(c)(i) Annex 8 Appendix 4 table 15 word omitted by S.I. 2022/1273 reg. 83(7)(c)(ii)(aa) Annex 8 Appendix 4 table 15 word omitted by S.I. 2022/1273 reg. 83(7)(c)(ii)(bb) Annex 8 Appendix 1s. 1 point 000.6 word substituted by S.I. 2022/1273 reg. 83(7) (b)(ii)Annex 8 Appendix 8 point 2.1 word substituted by S.I. 2022/1273 reg. 83(7)(d)(iv) Annex 8 Appendix 1 words inserted by S.I. 2022/1273 reg. 83(7)(b)(i)(aa) Annex 8 Appendix 1 words omitted by S.I. 2022/1273 reg. 83(7)(b)(i)(bb) Annex 8 Appendix 8 point 1.4.1 words omitted by S.I. 2022/1273 reg. 83(7)(d)(iii) (bb)Annex 8 Appendix 8 point 1.4 words substituted by S.I. 2022/1273 reg. 83(7)(d)(ii) Annex 8 Appendix 8 point 2.1 table words substituted by S.I. 2022/1273 reg. 83(7) (d)(v)

Annex 2 Appendix 2s. 2 point 2 omitted by S.I. 2022/1273 reg. 83(2)(b)(ii) Annex 2 Appendix 2 words inserted by S.I. 2022/1273 reg. 83(2)(b)(i) Annex 6 Appendix 7 point 1.3 substituted by S.I. 2022/1273 reg. 83(5)(e)(i) Annex 6 Appendix 7 point 1.5 image substituted by S.I. 2022/1273 reg. 83(5)(e)(iii) _ (aa) Annex 6 Appendix 7 point 2.1 word substituted by S.I. 2022/1273 reg. 83(5)(e)(iv) Annex 6 Appendix 1 words omitted by S.I. 2022/1273 reg. 83(5)(c) Annex 6 Appendix 7 point 1.5 words omitted by S.I. 2022/1273 reg. 83(5)(e)(iii)(bb) Annex 6 Appendix 2 point 8 words substituted by S.I. 2022/1273 reg. 83(5)(d) Annex 6 Appendix 3 point 8 words substituted by S.I. 2022/1273 reg. 83(5)(d) Annex 6 Appendix 4 point 8 words substituted by S.I. 2022/1273 reg. 83(5)(d) _ Annex 6 Appendix 5 point 8 words substituted by S.I. 2022/1273 reg. 83(5)(d) Annex 6 Appendix 7 point 1.4 words substituted by S.I. 2022/1273 reg. 83(5)(e)(ii) Annex 6 Appendix 7 point 2.1 table words substituted by S.I. 2022/1273 reg. 83(5) (e)(v) Art. 3(5) omitted by S.I. 2022/1273 reg. 82(4)(a) Art. 3(16) words substituted by S.I. 2022/1273 reg. 82(4)(b) Art. 3(20) words substituted by S.I. 2022/1273 reg. 82(4)(c) Art. 10(1a) inserted by S.I. 2022/1273 reg. 82(8)(b) _ Annex 10a para. 3(f) words inserted by S.I. 2022/1273 reg. 83(9)(a) Annex 10a para. 3(f) table words substituted by S.I. 2022/1273 reg. 83(9)(b)(c) Art. 12(8) inserted by S.I. 2022/1273 reg. 82(10) _