Commission Regulation (EU) 2017/2400 of 12 December 2017 implementing Regulation (EC) No 595/2009 of the European Parliament and of the Council as regards the determination of the CO2 emissions and fuel consumption of heavy-duty vehicles and amending Directive 2007/46/EC of the European Parliament and of the Council and Commission Regulation (EU) No 582/2011 (Text with EEA relevance)

ANNEX IX

VERIFYING TRUCK AUXILIARY DATA

- 3. Determination of technology specific average standard power values
- 3.1 Fan

For the fan power the standard values shown in Table 1 shall be used depending on mission profile and technology:

TABLE 1

Fan drive	Fan	Fan power consumption [W]									
cluster	control	Long haul	Regional delivery	Urban delivery	Municipal utility	Construction					
Crankshaft mounted	Electronicall controlled visco clutch	y618	671	516	566	1 037					
	Bimetallic controlled visco clutch	818	871	676	766	1 277					
	Discrete step clutch	668	721	616	616	1 157					
	On/off cluch	718	771	666	666	1 237					
Belt driven or driven via	Electronic controlled visco clutch	989	1 044	833	933	1 478					
transmission	Bimetallic controlled visco clutch	1 189	1 244	993	1 133	1 718					
	Discrete step clutch	1 039	1 094	983	983	1 598					
	On/off cluch	1 089	1 144	1 033	1 033	1 678					
Hydraulicall driven	vVariable displacement pump	938 t	1 155	832	917	1 872					
	Constant displacement pump	1 200 t	1 400	1 000	1 100	2 300					
Electrically driven	Electronicall	у700	800	600	600	1 400					

Mechanical power demand of the fan

If a new technology within a fan drive cluster (e.g. crankshaft mounted) cannot be found in the list the highest power values within that cluster shall be taken. If a new technology cannot be

found in any cluster the values of the worst technology at all shall be taken (hydraulic driven constant displacement pump)

3.2 Steering System

For the steering pump power the standard values [W] shown in Table 2 shall be used depending on the application in combination with correction factors:

$\int^{F_1} TABLE 2$

Mec	hani	cal p	owe	r dei	manc	l of s	teer	ing p	um	р									
Ide of v cor	entifi vehio nfigu	catio :le ratio	on on		Ste	erin	g po	wer	cons	ump	tion]	P [V	V]						
Nu	m h e	teCh	as se s	chVie	a chaille ng haul			Re	gion	al	Ur	ban		Mı	inici	ipal	Co	nstr	uctior
of	coi	ıfigu	rfägie	mgiis	gise ihle			del	iver	у	del	iver	у	uti	lity	•			
axl	es		ma lad ma (to	xim len lss ns)	untu +F	B	S	U + F	B	S	U + F	B	S	U + F	B	S	U + F	B	S
2	4 × 2	Rigi lorr + (Tra	iđ≯ y7,5 - ctt0r)	1				240	20	20	220	20	30						
		Rigi lorr + (Tra	iđ≯ y10 - ctt⊘r)	2	340	30	0	290	30	20	260	20	30						
		Rigi lorr + (Tra	iđ≯ y12 - uctt6r)	3				310	30	30	280	30	40						
		Rig lorr	i¢ y16	4	510	100	0	490	40	40	430	40	50	430	30	50	580	30	70
		Trac	tør 16	5	600	120	0	540	90	40							640	50	80
	4 × 4	Rig lorr	iđ≯ y7,5 - 16	6															
		Rig lorr	i¢ y16	7	-														
		Trac	tor 16	8	_														
3	$6 \times 2/2 - 4$	Rig lorr	idall Y	9	600	120	0	490	60	40	440	50	50	430	30	50	640	50	80
		Trac	tdt	10	450	120	0	440	90	40	1						640	50	80

appear in the content and are referenced with annotations. (See end of Document for details)

	6 × 4	Rig lorr	idall y	11	600	120	0	490	60	40		430	30	50	640	50	80
		Trac	tdf	12	450	120	0	440	90	40					640	50	80
	6 × 6	Rig lorr	idall V	13							 	 					
		Trac	tadł	14													
4	8 × 2	Rig lorr	idall V	15													
	8 × 4	Rig lorr	idall V	16											640	50	80
	8 × 6/8	Rig Moerr	idall y	17													

Textual Amendments F1 Substituted by Commission Regulation (EU) 2019/318 of 19 February 2019 amending Regulation (EU) 2017/2400 and Directive 2007/46/EC of the European Parliament and of the Council as regards the determination of the CO2 emissions and fuel consumption of heavy-duty vehicles (Text with EEA relevance).

where:

U	= Unloaded – pumping oil without steering pressure demand
F	= Friction – friction in the pump
В	= Banking – steer correction due to banking of the road or side wind
S	= Steering – steer pump power demand due to cornering and
	manoeuvring.]

To consider the effect of different technologies, technology depending scaling factors as shown in Table 3 and Table 4 shall be applied.

TABLE 3

Factor c1 depending on technology									
Technology	$c_{1,U+F}$	c _{1,B}	c _{1,S}						
Fixed displacement	1	1	1						
Fixed displacement with electronical control	0,95	1	1						
Dual displacement	0,85	0,85	0,85						
Variable displacement, mech. controlled	0,75	0,75	0,75						

Scaling factors depending on technology

Variable displacement, elec. controlled	0,6	0,6	0,6
Electric	0	$1,5/\eta_{alt}$	$1/\eta_{alt}$

with η_{alt} = alternator efficiency = const. = 0,7

 $[^{F1}$ If a new technology is not listed, the technology 'fixed displacement' shall be considered in the simulation tool.]

TABLE 4

Scaling factor depending on number of steered axles

	Fact	Factor c2 depending on number of steered axles													
Nun of	nbleøng haul			Regional delivery		Urban delivery			Municipal utility			Construction			
steer axle	reel _{2,U} s _{+F}	c _{2,B}	c _{2,S}	c _{2,U} +F	c _{2,B}	c _{2,S}	c _{2,U} +F	c _{2,B}	c _{2,S}	c _{2,U} +F	c _{2,B}	c _{2,S}	c _{2,U} +F	c _{2,B}	c _{2,S}
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
2	1	0,7	0,7	1,0	0,7	0,7	1,0	0,7	0,7	1,0	0,7	0,7	1,0	0,7	0,7
3	1	0,5	0,5	1,0	0,5	0,5	1,0	0,5	0,5	1,0	0,5	0,5	1,0	0,5	0,5
4	1,0	0,5	0,5	1,0	0,5	0,5	1,0	0,5	0,5	1,0	0,5	0,5	1,0	0,5	0,5

The final power demand is calculated by:

If different technologies are used for multi-steered axles, the mean values of the corresponding factors c1 shall be used.

The final power demand is calculated by:

 $P_{tot} = \sum_{i} (P_{U+F} * mean(c_{1,U+F}) * (c_{2i,U+F})) + \sum_{i} (P_B * mean(c_{1,B}) * (c_{2i,B})) + \sum_{i} (P_S * mean(c_{1,S}) * (c_{2i,S}))$

where:

P _{tot} =	Total power demand [W]
P =	Power demand [W]
<i>c</i> ₁ =	Correction factor depending on technology
<i>c</i> ₂ =	Correction factor depending on number of steered axles
<i>U</i> + <i>F</i> =	Unloaded + friction [-]
<i>B</i> =	Banking [-]
<i>S</i> =	Steering [-]
<i>i</i> =	Number of steered axles [-]

3.3 Electric system

For the electric system power the standard values [W] as shown in Table 5 shall be used depending on the application and technology in combination with the alternator efficiencies:

TABLE 5

Electrical power demand of electric system

Technologies	Electric pow	Electric power consumption [W]										
influencing electric power consumption	Long haul	Regional delivery	Urban delivery	Municipal utility	Construction							
Standard technology electric power [W]	1 200	1 000	1 000	1 000	1 000							
LED main front headlights	- 50	- 50	- 50	- 50	- 50							

To derive the mechanical power, an alternator technology dependent efficiency factor as shown in Table 6 shall be applied.

TABLE 6

Alternator	Efficiency n _{alt}										
(power conversion)	Long haul	Regional deliverv	Urban deliverv	Municipal utility	Construction						
technologies	eneric										
efficiency											
values for											
specific											
technologies											
Standard alternator	0,7	0,7	0,7	0,7	0,7						

Alternator efficiency factor

[^{F1}If the technology used in the vehicle is not listed, the technology 'standard alternator' shall be considered in the simulation tool.]

The final power demand is calculated by:

$$P_{tot} = \frac{P_{el}}{\eta_{alt}}$$

where:

P _{tot}	=	Total power demand [W]
P_{el}	=	Electrical power demand [W]
η_{alt}	=	Alternator efficiency [-]

3.4 Pneumatic system

For pneumatic systems working with over pressure the standard power values [W] as shown in Table 7 shall be used depending on application and technology.

TABLE 7

Mechanical power demand of pneumatic systems (over pressure)

Size of air	Technology	Long Haul	Regional Delivery	Urban Delivery	Municipal Utility	Construction
supply		Pmean	Pmean	Pmean	Pmean	Pmean
		[W]	[W]	[W]	[W]	[W]
small displ. \leq 250 cm ³ 1 cyl./2 cyl.	Baseline	1 400	1 300	1 200	1 200	1 300
	+ ESS	- 500	- 500	- 400	- 400	- 500
	+ visco clutch	- 600	- 600	- 500	- 500	- 600
	+ mech. clutch	- 800	- 700	- 550	- 550	- 700
	+ AMS	- 400	- 400	- 300	- 300	- 400
medium	Baseline	1 600	1 400	1 350	1 350	1 500
250 cm ³ < displ <	+ ESS	- 600	- 500	- 450	- 450	- 600
500 cm^3 1 cyl./2 cyl.	+ visco clutch	- 750	- 600	- 550	- 550	- 750
1-stage	+ mech. clutch	- 1 000	- 850	- 800	- 800	- 900
	+ AMS	- 400	- 200	- 200	- 200	- 400
medium	Baseline	2 100	1 750	1 700	1 700	2 100
250 cm^3	+ ESS	-1 000	- 700	- 700	- 700	-1 100
500 cm^3 1 cyl./2 cyl.	+ visco clutch	-1 100	- 900	- 900	- 900	- 1 200
2-stage	+ mech. clutch	- 1 400	-1 100	- 1 100	-1 100	- 1 300
	+ AMS	- 400	- 200	- 200	- 200	- 500
large	Baseline	4 300	3 600	3 500	3 500	4 100
displ. > 500 cm ³ 1 cyl./2 cyl. 1-stage/2- stage	+ ESS	-2 700	-2300	-2 300	-2 300	-2 600
	+ visco clutch	- 3 000	-2 500	-2 500	-2 500	- 2 900
	+ mech. clutch	- 3 500	-2 800	-2 800	-2 800	- 3 200
	+ AMS	- 500	- 300	- 200	- 200	- 500

For pneumatic systems working with vacuum (negative pressure) the standard power values [W] as shown in Table 8 shall be used.

TABLE 8

Mechanical power demand of pneumatic systems (vacuum pressure)

	Long Haul	Regional Delivery	Urban Delivery	Municipal Utility	Construction	
	Pmean	Pmean	Pmean	Pmean	Pmean	
	[W]	[W]	[W]	[W]	[W]	
Vacuum pump	190	160	130	130	130	

Fuel saving technologies can be considered by subtracting the corresponding power demand from the power demand of the baseline compressor.

The following combinations of technologies are not considered:

- (a) ESS and clutches
- (b) Visco clutch and mechanical clutch

In case of a two-stage compressor, the displacement of the first stage shall be used to describe the size of the air compressor system

3.5 Air Conditioning system

For vehicles having an air conditioning system, the standard values [W] as shown in Table 9 shall be used depending on the application.

[^{F1}TABLE 9

Mechanical power demand of AC system

Identification of vehicle configuration			×	AC power consumption [W]					
Number of axles	r Axle configu	Chassis r ætiofi gu	Technic r atio miss maximu laden mass (tons)	aNyhicle silykoup um	Long haul	Region delivery	alUrban y delivery	Munici utility	p&Construction
2	4 × 2	Rigid lorry + (Tractor)	>7,5 - 10	1		150	150		
		Rigid lorry + (Tractor)	> 10 - 12	2	200	200	150		
		Rigid lorry + (Tractor)	> 12 - 16	3		200	150		
		Rigid lorry	> 16	4	350	200	150	300	200
		Tractor	>16	5	350	200			200
	4 × 4	Rigid lorry	> 7,5 - 16	6			, I		

Ctatura Doint in time onion

Status: Point in time view as at 51/01/2020.
Changes to legislation: There are outstanding changes not yet made to Commission
Regulation (EU) 2017/2400. Any changes that have already been made to the legislation
appear in the content and are referenced with annotations. (See end of Document for details)

an at 21/01/2020

		Rigid lorry	> 16	7					
		Tractor	>16	8	_				
3	$\begin{array}{c} 6 \times 2/2 \\ -4 \end{array}$	Rigid lorry	all	9	350	200	150	300	200
		Tractor	all	10	350	200			200
	6 × 4	Rigid lorry	all	11	350	200		300	200
		Tractor	all	12	350	200			200
	6 × 6	Rigid lorry	all	13	_				
		Tractor	all	14					
4	8 × 2	Rigid lorry	all	15	-				
	8 × 4	Rigid lorry	all	16					200
		Rigid lorry	all	17	—]		1	1	1

3.6 Transmission Power Take-Off (PTO)

For vehicles with PTO and/or PTO drive mechanism installed on the transmission, the power consumption shall be considered by determined standard values. The corresponding standard values represent these power losses in usual drive mode when the PTO is switched off/ disengaged. [^{F1}Application related power consumptions at engaged PTO are added by the simulation tool and are not described in the following.]

TABLE 10

Mechanical power demand of switched off/disengaged power take-off

Design variants rega (in comparison to a t PTO and / or PTO da Additional drag loss	rding power losses ransmission without rive mechanism) relevant parts	PTO incl. drive mechanism	only PTO drive mechanism
Shafts / gear wheels	Other elements	Power loss [W]	Power loss [W]
only one engaged gearwheel positioned above the specified oil level (no additional gearmesh)			0
only the drive shaft of the PTO	tooth clutch (incl. synchroniser) or sliding gearwheel	50	50

only the drive shaft of the PTO	multi-disc clutch	1 000	1 000
only the drive shaft of the PTO	multi-disc clutch and oil pump	2 000	2 000
drive shaft and/or up to 2 engaged gearwheels	tooth clutch (incl. synchroniser) or sliding gearwheel	300	300
drive shaft and/or up to 2 engaged gearwheels	multi-disc clutch	1 500	1 500
drive shaft and/or up to 2 engaged gearwheels	multi-disc clutch and oil pump	3 000	3 000
drive shaft and/or more than 2 engaged gearwheels	tooth clutch (incl. synchroniser) or sliding gearwheel	600	600
drive shaft and/or more than 2 engaged gearwheels	multi-disc clutch	2 000	2 000
drive shaft and/or more than 2 engaged gearwheels	multi-disc clutch and oil pump	4 000	4 000

Status:

Point in time view as at 31/01/2020.

Changes to legislation:

There are outstanding changes not yet made to Commission Regulation (EU) 2017/2400. Any changes that have already been made to the legislation appear in the content and are referenced with annotations.