xmlns:atom="http://www.w3.org/2005/Atom" xmlns:atom="http://www.w3.org/2005/Atom"
Please note that the date you requested in the address for this web page is not an actual date upon which a change occurred to this item of legislation. You are being shown the legislation from , which is the first date before then upon which a change was made.
The calibration laboratory facilities shall comply with the requirements of either ISO/TS 16949, ISO 9000 series or ISO/IEC 17025. All laboratory reference measurement equipment, used for calibration and/or verification, shall be traceable to national or international standards.
Engines shall be grouped into engine CO2-families defined in accordance with Appendix 3. Paragraph 4.1 explains which testruns shall be performed for the purpose of certification of one specific engine CO2-family.
All testruns performed for the purpose of certification of one specific engine CO2-family defined in accordance with Appendix 3 to this Annex shall be conducted on the same physical engine and without any changes to the setup of the engine dynamometer and the engine system, apart from the exceptions defined in paragraph 4.2 and Appendix 3.
The tests shall be conducted under ambient conditions meeting the following conditions over the whole testrun:
The parameter fa describing the laboratory test conditions, determined in accordance with paragraph 6.1 of Annex 4 to UN/ECE Regulation 49 Rev.06, shall be within the following limits: 0,96 ≤ fa ≤ 1,04.
The absolute temperature (Ta) of the engine intake air expressed in Kelvin, determined in accordance with paragraph 6.1 of Annex 4 to UN/ECE Regulation 49 Rev.06 shall be within the following limits: 283 K ≤ Ta ≤ 303 K.
The atmospheric pressure expressed in kPa, determined in accordance with paragraph 6.1 of Annex 4 to UN/ECE Regulation 49 Rev.06 shall be within the following limits: 90 kPa ≤ ps ≤ 102 kPa.
If tests are performed in test cells that are able to simulate barometric conditions other than those existing in the atmosphere at the specific test site, the applicable fa value shall be determined with the simulated values of atmospheric pressure by the conditioning system. The same reference value for the simulated atmospheric pressure shall be used for the intake air and exhaust path and all other relevant engine systems. The actual value of the simulated atmospheric pressure for the intake air and exhaust path and all other relevant engine systems shall be within the limits specified in subpoint (3).
In cases where the ambient pressure in the atmosphere at the specific test site exceeds the upper limit of 102 kPa, tests in accordance with this Annex may still be performed. In this case tests shall be performed with the specific ambient air pressure in the atmosphere.
In cases where the test cell has the ability to control temperature, pressure and/or humidity of engine intake air independent of the atmospheric conditions the same settings for those parameters shall be used for all testruns performed for the purpose of certification of one specific engine CO2-family defined in accordance with Appendix 3 to this Annex.
The test engine shall be installed in accordance with paragraphs 6.3 to 6.6 of Annex 4 to UN/ECE Regulation 49 Rev.06.
If auxiliaries/equipment necessary for operating the engine system are not installed as required in accordance with paragraph 6.3 of Annex 4 to UN/ECE Regulation 49 Rev.06, all measured engine torque values shall be corrected for the power required for driving these components for the purpose of this Annex in accordance with paragraph 6.3 of Annex 4 to UN/ECE Regulation 49 Rev.06.
The power consumption of the following engine components resulting in the engine torque required for driving these engine components shall be determined in accordance with Appendix 5 to this Annex:
fan
electrically powered auxiliaries/equipment necessary for operating the engine system
In the case of a closed crankcase, the manufacturer shall ensure that the engine's ventilation system does not permit the emission of any crankcase gases into the atmosphere. If the crankcase is of an open type, the emissions shall be measured and added to the tailpipe emissions, following the provisions set out in paragraph 6.10. of Annex 4 to UN/ECE Regulation 49 Rev.06.
During all testruns the charge air cooling system used on the test bed shall be operated under conditions which are representative for in-vehicle application at reference ambient conditions. The reference ambient conditions are defined as 293 K for air temperature and 101,3 kPa for pressure.
The laboratory charge air cooling for tests according to this regulation should comply with the provisions specified in paragraph 6.2 of Annex 4 to UN/ECE Regulation 49 Rev.06.
During all testruns the engine cooling system used on the test bed shall be operated under conditions which are representative for in-vehicle application at reference ambient conditions. The reference ambient conditions are defined as 293 K for air temperature and 101,3 kPa for pressure.
The engine cooling system should be equipped with thermostats according to the manufacturer specification for vehicle installation. If either a non-operational thermostat is installed or no thermostat is used, subpoint (3) shall apply. The setting of the cooling system shall be performed in accordance with subpoint (4).
If no thermostat is used or a non-operational thermostat is installed, the test bed system shall reflect the behavior of the thermostat under all test conditions. The setting of the cooling system shall be performed in accordance with subpoint (4).
[F1The engine coolant flow rate (or alternatively the pressure difference across the engine side of the heat exchanger) and the engine coolant temperature shall be set to a value representative for in-vehicle application at reference ambient conditions when the engine is operated at rated speed and full load with the engine thermostat in fully open position. This setting defines the coolant reference temperature. For all testruns performed for the purpose of certification of one specific engine within one engine CO 2 -family, the cooling system setting shall not be changed, neither on the engine side nor on the test bed side of the cooling system. The temperature of the test bed side cooling medium shall be kept reasonably constant by good engineering judgement. The cooling medium on the test bed side of the heat exchanger shall not exceed the nominal thermostat opening temperatur downstream of the heat exchanger.]
For all testruns performed for the purpose of certification of one specific engine within one engine CO2-family the engine coolant temperature shall be maintained between the nominal value of the thermostat opening temperature declared by the manufacturer and the coolant reference temperature in accordance with subpoint (4) as soon as the engine coolant has reached the declared thermostat opening temperature after engine cold start.
For the WHTC coldstart test performed in accordance with paragraph 4.3.3, the specific initial conditions are specified in paragraphs 7.6.1. and 7.6.2 of Annex 4 to UN/ECE Regulation 49 Rev.06. If simulation of the thermostat behaviour in accordance with subpoint (3) is applied, there shall be no coolant flow across the heat exchanger as long as the engine coolant has not reached the declared nominal thermostat opening temperature after cold start.
Textual Amendments
F1 Substituted by Commission Regulation (EU) 2019/318 of 19 February 2019 amending Regulation (EU) 2017/2400 and Directive 2007/46/EC of the European Parliament and of the Council as regards the determination of the CO2 emissions and fuel consumption of heavy-duty vehicles (Text with EEA relevance).
The respective reference fuel for the engine systems under test shall be selected from the fuel types listed in Table 1. The fuel properties of the reference fuels listed in Table 1 shall be those specified in Annex IX to Commission Regulation (EU) No 582/2011.
To ensure that the same fuel is used for all testruns performed for the purpose of certification of one specific engine CO2-family no refill of the tank or switch to another tank supplying the engine system shall occur. Exceptionally a refill or switch may be allowed if it can be ensured that the replacement fuel has exactly the same properties as the fuel used before (same production batch).
The NCV for the fuel used shall be determined by two separate measurements in accordance with the respective standards for each fuel type defined in Table 1. The two separate measurements shall be performed by two different labs independent from the manufacturer applying for certification. The lab performing the measurements shall comply with the requirements of ISO/IEC 17025. The approval authority shall ensure that the fuel sample used for determination of the NCV is taken from the batch of fuel used for all testruns.
If the two separate values for the NCV are deviating by more than 440 Joule per gram fuel, the values determined shall be void and the measurement campaign shall be repeated.
[F1The mean value of the two separate NCV that are not deviating by more than 440 Joule per gram fuel shall be documented in MJ/kg rounded to 2 places to the right of the decimal point in accordance with ASTM E 29-06.]
For gas fuels the standards for determining the NCV according to Table 1 contain the calculation of the calorific value based on the fuel composition. The gas fuel composition for determining the NCV shall be taken from the analysis of the reference gas fuel batch used for the certification tests. For the determination of the gas fuel composition used for determining the NCV only one single analysis by a lab independent from the manufacturer applying for certification shall be performed. For gas fuels the NCV shall be determined based on this single analysis instead of a mean value of two separate measurements.
[F2For gas fuels, switches between fuel tanks of different production batches are allowed exceptionally; in that case, the NCV of each used fuel batch should be calculated and the highest value should be documented.]
Textual Amendments
Reference fuels for testing
Fuel type / engine type | Reference fuel type | Standard used for determination of NCV |
---|---|---|
Diesel / CI | B7 | at least ASTM D240 or DIN 59100-1 (ASTM D4809 is recommended) |
Ethanol / CI | ED95 | at least ASTM D240 or DIN 59100-1 (ASTM D4809 is recommended) |
Petrol / PI | E10 | at least ASTM D240 or DIN 59100-1 (ASTM D4809 is recommended) |
Ethanol / PI | E85 | at least ASTM D240 or DIN 59100-1 (ASTM D4809 is recommended) |
LPG / PI | LPG Fuel B | ASTM 3588 or DIN 51612 |
[F1Natural gas / PI | G 25 or G R | ISO 6976 or ASTM 3588] |
The lubricating oil for all testruns performed in accordance with this Annex shall be a commercially available oil with unrestricted manufacturer approval under normal in-service conditions as defined in paragraph 4.2 of Annex 8 to UN/ECE Regulation 49 Rev.06. Lubricants for which the usage is restricted to certain special operation conditions of the engine system or having an unusually short oil change interval shall not be used for the purpose of testruns in accordance with this Annex. The commercially available oil shall not be modified by any means and no additives shall be added.
All testruns performed for the purpose of certification of the CO2 emissions and fuel consumption related properties of one specific engine CO2-family shall be performed with the same type of lubricating oil.
All fuel flows consumed by the whole engine system shall be captured by the fuel flow measurement system. Additional fuel flows not directly supplied to the combustion process in the engine cylinders shall be included in the fuel flow signal for all testruns performed. Additional fuel injectors (e.g. cold start devices) not necessary for the operation of the engine system shall be disconnected from the fuel supply line during all testruns performed.
The measurement equipment shall meet the requirements of paragraph 9 of Annex 4 to UN/ECE Regulation 49 Rev.06.
Notwithstanding the requirements defined in paragraph 9 of Annex 4 to UN/ECE Regulation 49 Rev.06, the measurement systems listed in Table 2 shall meet the limits defined in Table 2.
Requirements of measurement systems
a ‘Accuracy’ means the deviation of the analyzer reading from a reference value which is traceable to a national or international standard. | ||||||
b ‘Rise time’ means the difference in time between the 10 percent and 90 percent response of the final analyzer reading (t90 – t10). | ||||||
c The ‘max calibration’ values shall be 1,1 times the maximum predicted value expected during all testruns for the respective measurement system. | ||||||
Linearity | ||||||
---|---|---|---|---|---|---|
Measurement system | Intercept| xmin × (a1 – 1) + a0 | | Slopea1 | Standard error of estimate SEE | Coefficient of determinationr2 | Accuracya | Rise timeb |
Engine speed | ≤ 0,2 % max calibrationc | 0,999 - 1,001 | ≤ 0,1 % max calibrationc | ≥ 0,9985 | 0,2 % of reading or 0,1 % of max. calibrationc of speed whichever is larger | ≤ 1 s |
Engine torque | ≤ 0,5 % max calibrationc | 0,995 - 1,005 | ≤ 0,5 % max calibrationc | ≥ 0,995 | 0,6 % of reading or 0,3 % of max. calibrationc of torque whichever is larger | ≤ 1 s |
Fuel mass flow for liquid fuels | ≤ 0,5 % max calibrationc | 0,995 - 1,005 | ≤ 0,5 % max calibrationc | ≥ 0,995 | 0,6 % of reading or 0,3 % of max. calibrationc of flow whichever is larger | ≤ 2 s |
Fuel mass flow for gaseous fuels | ≤ 1 % max calibrationc | 0,99 - 1,01 | ≤ 1 % max calibrationc | ≥ 0,995 | 1 % of reading or 0,5 % of max. calibrationc of flow whichever is larger | ≤ 2 s |
Electrical Power | ≤ 1 % max calibrationc | 0,98 - 1,02 | ≤ 2 % max calibrationc | ≥ 0,990 | n.a. | ≤ 1 s |
Current | ≤ 1 % max calibrationc | 0,98 - 1,02 | ≤ 2 % max calibrationc | ≥ 0,990 | n.a. | ≤ 1 s |
Voltage | ≤ 1 % max calibrationc | 0,98 - 1,02 | ≤ 2 % max calibrationc | ≥ 0,990 | n.a. | ≤ 1 s |
‘xmin’, used for calculation of the intercept value in Table 2, shall be 0,9 times the minimum predicted value expected during all testruns for the respective measurement system.
The signal delivery rate of the measurement systems listed in Table 2, except for the fuel mass flow measurement system, shall be at least 5 Hz (≥ 10 Hz recommended). The signal delivery rate of the fuel mass flow measurement system shall be at least 2 Hz.
All measurement data shall be recorded with a sample rate of at least 5 Hz (≥ 10 Hz recommended).
A verification of the demanded requirements defined in Table 2 shall be performed for each measurement system. At least 10 reference values between xmin and the ‘max calibration’ value defined in accordance with paragraph 3.5 shall be introduced to the measurement system and the response of the measurement system shall be recorded as measured value.
For the linearity verification the measured values shall be compared to the reference values by using a least squares linear regression in accordance with paragraph A.3.2 of Appendix 3 to Annex 4 to UN/ECE Regulation 49 Rev.06.