- Latest available (Revised)
- Original (As adopted by EU)
Commission Implementing Regulation (EU) 2018/2066 of 19 December 2018 on the monitoring and reporting of greenhouse gas emissions pursuant to Directive 2003/87/EC of the European Parliament and of the Council and amending Commission Regulation (EU) No 601/2012 (Text with EEA relevance)
When the UK left the EU, legislation.gov.uk published EU legislation that had been published by the EU up to IP completion day (31 December 2020 11.00 p.m.). On legislation.gov.uk, these items of legislation are kept up-to-date with any amendments made by the UK since then.
Legislation.gov.uk publishes the UK version. EUR-Lex publishes the EU version. The EU Exit Web Archive holds a snapshot of EUR-Lex’s version from IP completion day (31 December 2020 11.00 p.m.).
There are currently no known outstanding effects by UK legislation for Commission Implementing Regulation (EU) 2018/2066, Division B..
Revised legislation carried on this site may not be fully up to date. At the current time any known changes or effects made by subsequent legislation have been applied to the text of the legislation you are viewing by the editorial team. Please see ‘Frequently Asked Questions’ for details regarding the timescales for which new effects are identified and recorded on this site.
PFC emissions shall be calculated from the emissions measurable in a duct or stack (‘point source emissions’) as well as fugitive emissions using the collection efficiency of the duct:
PFC emissions (total) = PFC emissions (duct) / collection efficiency
The collection efficiency shall be measured when the installation-specific emission factors are determined. For its determination the most recent version of the guidance mentioned under Tier 3 of section 4.4.2.4 of the 2006 IPCC Guidelines shall be used.
The operator shall calculate emissions of CF4 and C2F6 emitted through a duct or stack using one of the following methods:
Method A where the anode effect minutes per cell-day are recorded;
Method B where the anode effect overvoltage is recorded.
The operator shall use the following equations for determining PFC emissions:
CF4 emissions [t] = AEM × (SEFCF4/1 000) × PrAl
C2F6 emissions [t] = CF4 emissions × FC2F6
Where:
=
Anode effect minutes / cell-day;
=
Slope emission factor [(kg CF4 / t Al produced) / (anode effect minutes / cell-day)]. Where different cell-types are used, different SEF may be applied as appropriate;
=
Annual production of primary Aluminium [t];
=
Weight fraction of C2F6 (t C2F6 / t CF4).
The anode effect minutes per cell-day shall express the frequency of anode effects (number anode effects / cell-day) multiplied by the average duration of anode effects (anode effect minutes / occurrence):
AEM = frequency × average duration
Emission factor: The emission factor for CF4 (slope emission factor, SEFCF4) expresses the amount [kg] of CF4 emitted per tonne of aluminium produced per anode effect minute / cell-day. The emission factor (weight fraction FC2F6) of C2F6 expresses the amount [t] of C2F6 emitted proportionate to the amount [t] of CF4 emitted.
Tier 1: The operator shall use technology-specific emission factors from Table 1 of this section of Annex IV.
Tier 2: The operator shall use installation-specific emission factors for CF4 and C2F6 established through continuous or intermittent field measurements. For the determination of those emission factors the operator shall use the most recent version of the guidance mentioned under Tier 3 of section 4.4.2.4 of the 2006 IPCC Guidelines(1). The emission factor shall also take into account emissions related to non-anode effects. The operator shall determine each emission factor with a maximum uncertainty of ± 15 %.
The operator shall determine the emission factors at least every three years or earlier where necessary due to relevant changes at the installation. Relevant changes shall include a change in the distribution of anode effect duration, or a change in the control algorithm affecting the mix of the types of anode effects or the nature of the anode effect termination routine.
Technology-specific emission factors related to activity data for the slope method.
Technology | Emission factor for CF4 (SEFCF4)[(kg CF4/t Al) / (AE-Mins/cell-day)] | Emission factor for C2F6 (FC2F6)[t C2F6/ t CF4] |
---|---|---|
Centre Worked Prebake (CWPB) | 0,143 | 0,121 |
Vertical Stud Søderberg (VSS) | 0,092 | 0,053 |
Where the anode effect overvoltage is measured, the operator shall use the following equations for the determination of PFC emissions:
CF4 emissions [t] = OVC × (AEO/CE) × PrAl × 0,001
C2F6 emissions [t] = CF4 emissions × FCF2F6
Where:
=
Overvoltage coefficient (‘emission factor’) expressed as kg CF4 per tonne of aluminium produced per mV overvoltage;
=
Anode effect overvoltage per cell [mV] determined as the integral of (time × voltage above the target voltage) divided by the time (duration) of data collection;
=
Average current efficiency of aluminium production [%];
=
Annual production of primary Aluminium [t];
=
Weight fraction of C2F6 (t C2F6 / t CF4);
The term AEO/CE (Anode effect overvoltage / current efficiency) expresses the time-integrated average anode effect overvoltage [mV overvoltage] per average current efficiency [%].
Emission factor: The emission factor for CF4 (‘overvoltage coefficient’ OVC) shall express the amount [kg] of CF4 emitted per tonne of aluminium produced per millivolt overvoltage [mV]. The emission factor of C2F6 (weight fraction FC2F6) shall express the amount [t] of C2F6 emitted proportionate to the amount [t] of CF4 emitted.
Tier 1:: The operator shall apply technology-specific emission factors from Table 2 of this section of Annex IV.
Tier 2: The operator shall use installation-specific emission factors for CF4 [(kg CF4 / t Al ) / (mV)] and C2F6 [t C2F6/ t CF4] established through continuous or intermittent field measurements. For the determination of those emission factors, the operator shall use the most recent version of the guidance mentioned under Tier 3 of section 4.4.2.4 of the 2006 IPCC Guidelines. The operator shall determine the emission factors with a maximum uncertainty of ± 15 % each.
The operator shall determine the emission factors at least every three years or earlier where necessary due to relevant changes at the installation. Relevant changes shall include a change in the distribution of anode effect duration or a change in the control algorithm affecting the mix of the types of anode effects or the nature of the anode effect termination routine.
Technology-specific emission factors related to overvoltage activity data.
Technology | Emission factor for CF4[(kg CF4/t Al) / mV] | Emission factor for C2F6[t C2F6/ t CF4] |
---|---|---|
Centre Worked Prebake (CWPB) | 1,16 | 0,121 |
Vertical Stud Søderberg (VSS) | N.A. | 0,053 |
International Aluminium Institute; The Aluminium Sector Greenhouse Gas Protocol; October 2006;US Environmental Protection Agency and International Aluminium Institute; Protocol for Measurement of Tetrafluoromethane (CF4) and Hexafluoroethane (C2F6) Emissions from Primary Aluminum Production; April 2008.
The Whole Regulation you have selected contains over 200 provisions and might take some time to download. You may also experience some issues with your browser, such as an alert box that a script is taking a long time to run.
Would you like to continue?
The Schedules you have selected contains over 200 provisions and might take some time to download. You may also experience some issues with your browser, such as an alert box that a script is taking a long time to run.
Would you like to continue?
Latest Available (revised):The latest available updated version of the legislation incorporating changes made by subsequent legislation and applied by our editorial team. Changes we have not yet applied to the text, can be found in the ‘Changes to Legislation’ area.
Original (As adopted by EU): The original version of the legislation as it stood when it was first adopted in the EU. No changes have been applied to the text.
Geographical Extent: Indicates the geographical area that this provision applies to. For further information see ‘Frequently Asked Questions’.
Show Timeline of Changes: See how this legislation has or could change over time. Turning this feature on will show extra navigation options to go to these specific points in time. Return to the latest available version by using the controls above in the What Version box.
Access essential accompanying documents and information for this legislation item from this tab. Dependent on the legislation item being viewed this may include:
This timeline shows the different versions taken from EUR-Lex before exit day and during the implementation period as well as any subsequent versions created after the implementation period as a result of changes made by UK legislation.
The dates for the EU versions are taken from the document dates on EUR-Lex and may not always coincide with when the changes came into force for the document.
For any versions created after the implementation period as a result of changes made by UK legislation the date will coincide with the earliest date on which the change (e.g an insertion, a repeal or a substitution) that was applied came into force. For further information see our guide to revised legislation on Understanding Legislation.
Use this menu to access essential accompanying documents and information for this legislation item. Dependent on the legislation item being viewed this may include:
Click 'View More' or select 'More Resources' tab for additional information including: