Commission Implementing Regulation (EU) 2020/1795 of 30 November 2020 concerning the authorisation of iron chelate of lysine and glutamic acid as a feed additive for all animal species (Text with EEA relevance)

COMMISSION IMPLEMENTING REGULATION (EU) 2020/1795

of 30 November 2020

concerning the authorisation of iron chelate of lysine and glutamic acid as a feed additive for all animal species

(Text with EEA relevance)

THE EUROPEAN COMMISSION,

Having regard to the Treaty on the Functioning of the European Union,

Having regard to Regulation (EC) No 1831/2003 of the European Parliament and of the Council of 22 September 2003 on additives for use in animal nutrition⁽¹⁾, and in particular Article 9(2) thereof,

Whereas:

- (1) Regulation (EC) No 1831/2003 provides for the authorisation of additives for use in animal nutrition and for the grounds and procedures for granting such authorisation.
- (2) In accordance with Article 7 of Regulation (EC) No 1831/2003 an application was submitted for the authorisation of iron chelate of lysine and glutamic acid. That application was accompanied by the particulars and documents required under Article 7(3) of that Regulation.
- (3) That application concerns the authorisation of iron chelate of lysine and glutamic acid as a feed additive for all animal species to be classified in the additive category 'nutritional additives'.
- (4) The European Food Safety Authority ('the Authority') concluded in its opinions of 4 July 2019⁽²⁾ and 25 May 2020⁽³⁾ that, under the proposed conditions of use, iron chelate of lysine and glutamic acid does not have an adverse effect on animal health and consumer safety. It also concluded that the additive is an eye irritant, skin and respiratory sensitizer, and stated a risk for the users of the additive upon inhalation. Therefore, the Commission considers that appropriate protective measures should be taken to prevent adverse effects on human health, in particular as regards the users of the additive. The Authority also concluded that that the additive does not pose an additional risk for the environment compared to other authorised compounds of iron and that it is an efficacious source of iron for all animal species. The Authority does not consider that there is a need for specific requirements of post-market monitoring. It also verified the report on the method of analysis of the feed additive in feed submitted by the Reference Laboratory set up by Regulation (EC) No 1831/2003.

Changes to legislation: There are currently no known outstanding effects for the Commission Implementing Regulation (EU) 2020/1795. (See end of Document for details)

- (5) The assessment of the additive shows that the conditions for authorisation, as provided for in Article 5 of Regulation (EC) No 1831/2003, are, subject to the relevant protective measures for the users of the additive, satisfied. Accordingly, the use of the additive should be authorised.
- (6) The measures provided for in this Regulation are in accordance with the opinion of the Standing Committee on Plants, Animals, Food and Feed,

HAS ADOPTED THIS REGULATION:

Article 1

The substance specified in the Annex, belonging to the additive category 'nutritional additives' and to the functional group 'compounds of trace elements', is authorised as an additive in animal nutrition subject to the conditions laid down in that Annex.

Article 2

This Regulation shall enter into force on the twentieth day following that of its publication in the *Official Journal of the European Union*.

This Regulation shall be binding in its entirety and directly applicable in all Member States.

Done at Brussels, 30 November 2020.

For the Commission

The President

Ursula VON DER LEYEN

Changes to legislation: There are currently no known outstanding effects for the Commission Implementing Regulation (EU) 2020/1795. (See end of Document for details)

ANNEX

Identificationne Additive Compositions Maximum Inimum Maximum ther End

number of the additive	of the holder		chemica formula descrip	a, categor ti of i, ca l nimal	age		t of t (Fe) eg of te	provisio	end onsf period of authorisation
Categor	y of nutr	itional ad	lditives. I		ıl group:	content %		ce elemei	nts
3b111		Iron chelate of lysine and glutamic acid	Additive composite Mixture of chelates of iron with lysine and chelates of iron with glutamic acid in a ratio of 1:1 as a powder with	tiannimal species			Ovine: 500 (total ^b) Bovines and poultry: 450 (total ^b) Piglets up to one week before weaning 250 mg/day (total ^b) Pet animals: 600 (total ^b) Other species: 750 (total ^b)	1.	Thd 2.2030 additive shall be incorporated into feed in the form of a premixture. Iron chelate of lysine and glutamic acid may be placed on the market and used as an additive consisting of a preparation.

a Details of the analytical methods are available at the following address of the Reference Laboratory: https://ec.europa.eu/jrc/en/eurl/feed-additives/evaluation-reports

b The amount of inert iron is not to be taken into consideration for the calculation of the total iron content of the feed.

a 3.	For
glutamic	users
acid	of
content	the
between	additive
18,5	and
and	premixtures,
21,5	feed
0%	business
and	operators
a	shall
maximum	establish
of	operational
	procedures
	and
moisture	appropriate
	organisational
Characterisation	measures
of the	to
active	address
substances	the
Chemical	potential
formulas:	risks
Iron-2,6-	by
diaminohexanoic	inhalation,
acid,	dermal
chloride	or
and	eyes
hydrogen	contact.
sulfate	Where
salt:	risks
$C_6H_{17}ClFeN_2O_7S$	cannot
Iron-2-	be
aminopentanedioic	reduced
acid,	to
sodium	an
and	acceptable
hydrogen	level
sulfate	by
salt:	these
$C_5H_{12}FeNNaO_{10}S$	procedures
41.4:1	and
Analytical	measures,
methods*	the
For the	additive
quantification	and
of the	premixtures
lysine	shall
and	be
glutamic	

a Details of the analytical methods are available at the following address of the Reference Laboratory: https://ec.europa.eu/jrc/en/eurl/feed-additives/evaluation-reports

b The amount of inert iron is not to be taken into consideration for the calculation of the total iron content of the feed.

acid				used
content				with
in the				appropriate
feed				personal
additive:				protective
_	ion			equipment,
	exchang	e		including
	chromate	ography		breathing
	coupled			protection.
	with			_
	post-			
	column			
	derivatis	ation		
	and			
	photome	tric		
	detection	h		
	(IEC-			
	VIS)			
For	,			
proving				
the				
chelated				
structure				
of the				
feed				
additive:				
_	mid-			
	infrared			
	(IR)			
	spectron	netry		
	together			
	with			
	the			
	determin	ation		
	of			
	the			
	content			
	of			
	the			
	trace			
	element			
	and			
	lysine			
	and			
	glutamic			
	acid			
	in			
	the			

a Details of the analytical methods are available at the following address of the Reference Laboratory: https://ec.europa.eu/jrc/en/eurl/feed-additives/evaluation-reports

b The amount of inert iron is not to be taken into consideration for the calculation of the total iron content of the feed.

		feed					
	E 4	additive					
	For the	٠.					
	quantific	ation					
	of total						
	iron						
	in the						
	feed						
	additive:						
	_	Atomic					
		Absorpti					
		Spectron	netry,				
		AAS					
		(EN					
		ISO					
		6869);					
		or	_				
	_	Inductive	ely				
		Coupled					
		Plasma					
		Atomic					
		Emission					
		Spectron	netry,				
		ICP-					
		AES					
		(EN					
		15510);					
		or					
	_	Inductive	ely				
		Coupled					
		Plasma					
		-					
		Atomic					
		Emission	ı				
		Spectron	netry				
		after					
		pressure					
		digestion	١,				
		ICP-					
		AES					
		(EN					
		15621).					
	For the						
	quantific	ation					
	of total						
	iron in						
	premixtu	res:					
_		e at the follov	ving address	of the Refere	nce Laborato	rv: https://ec	euror

a Details of the analytical methods are available at the following address of the Reference Laboratory: https://ec.europa.eu/jrc/en/eurl/feed-additives/evaluation-reports

b The amount of inert iron is not to be taken into consideration for the calculation of the total iron content of the feed.

		Atomic			
		Absorption	n l		
		Constrain	011		
		Spectrom	ietry,		
		AAS			
		(EN			
		ISO			
		6869);			
		or or			
			.1		
	_	Inductive	iy		
		Coupled			
		Plasma			
		-			
		Atomic			
		Emission			
		Spectrom			
		ICP-	,		
		AES			
		(EN			
		15510);			
		or			
	_	Inductive	ely		
		Coupled	•		
		Plasma			
		_			
		Atomic			
		Emission			
		Spectrom	netry		
		after			
		pressure			
		digestion	,		
		ICP-	·		
		AES			
		(EN			
		15621);			
		or			
	_	Inductive	ely		
		Coupled			
		Plasma			
		-			
		Mass			
		Spectrom	netrv.		
		ICP-);		
		MS			
		(EN			
		17053).			
	For the				
	quantific	ation			
	of total				
	iron in				
 C.1 1	 			 	

a Details of the analytical methods are available at the following address of the Reference Laboratory: https://ec.europa.eu/jrc/en/eurl/feed-additives/evaluation-reports

b The amount of inert iron is not to be taken into consideration for the calculation of the total iron content of the feed.

feed			
materials	\$		
and			
compour	nd		
feed:			
iccu.	Atomic		
_			
	Absorption		
	Spectrometry,		
	AAS		
	(Commission		
	Regulation		
	(EC)		
	No '		
	152/2009,		
	Annex		
	IV-		
	(C)		
	or		
_	Atomic		
	Absorption		
	Spectrometry,		
	AAS		
	(EN		
	ISO		
	6869)		
	· ·		
	or		
_	Inductively		
	Coupled		
	Plasma		
	_		
	Atomic		
	Emission		
	Spectrometry,		
	ICP-		
	AES		
	(EN		
	15510)		
	or		
_	Inductively		
	Coupled		
	Plasma		
	_		
	Atomic		
	Emission		
	Spectrometry		
	after		
	pressure		
	digestion,		
	ICP-		

a Details of the analytical methods are available at the following address of the Reference Laboratory: https://ec.europa.eu/jrc/en/eurl/feed-additives/evaluation-reports

b The amount of inert iron is not to be taken into consideration for the calculation of the total iron content of the feed.

		AES			
		(EN			
		15621)			
		or			
	_	Inductive	ely		
		Inductive Coupled			
		Plasma			
		_			
		Mass			
		Spectron	netry,		
		IĈP-			
		MS			
		(EN			
		17053).			

a Details of the analytical methods are available at the following address of the Reference Laboratory: https://ec.europa.eu/jrc/en/eurl/feed-additives/evaluation-reports

b The amount of inert iron is not to be taken into consideration for the calculation of the total iron content of the feed.

- (1) OJ L 268, 18.10.2003, p. 29.
- (2) EFSA Journal 2019;17(7):5792.
- (**3**) EFSA Journal 18(6):6164.

11

Changes to legislation:

There are currently no known outstanding effects for the Commission Implementing Regulation (EU) 2020/1795.