- Latest available (Revised)
- Point in Time (01/01/2014)
- Original (As adopted by EU)
Commission Regulation (EEC) No 2568/91 of 11 July 1991 on the characteristics of olive oil and olive-residue oil and on the relevant methods of analysis
When the UK left the EU, legislation.gov.uk published EU legislation that had been published by the EU up to IP completion day (31 December 2020 11.00 p.m.). On legislation.gov.uk, these items of legislation are kept up-to-date with any amendments made by the UK since then.
Legislation.gov.uk publishes the UK version. EUR-Lex publishes the EU version. The EU Exit Web Archive holds a snapshot of EUR-Lex’s version from IP completion day (31 December 2020 11.00 p.m.).
Version Superseded: 01/03/2014
Point in time view as at 01/01/2014.
There are outstanding changes by UK legislation not yet made to Commission Regulation (EEC) No 2568/91. Any changes that have already been made to the legislation appear in the content and are referenced with annotations.
Changes and effects yet to be applied by the editorial team are only applicable when viewing the latest version or prospective version of legislation. They are therefore not accessible when viewing legislation as at a specific point in time. To view the ‘Changes to Legislation’ information for this provision return to the latest version view using the options provided in the ‘What Version’ box above.
Editorial Information
X1 Substituted by Corrigendum to Commission Regulation (EEC) No 2568/91 of 11 July 1991 on the characteristics of olive oil and olive-residue oil and on the relevant methods of analysis (Official Journal of the European Communities No L 248 of 5 September 1991).
Textual Amendments
Evaporate to [X1dryness in a current] of nitrogen and then weigh accurately 5 g of the dry filtered sample into the same flask.
[F2Oils] containing appreciable quantities of cholesterol may show a peak having a retention time identical to cholestanol. If this occurs the sterol fraction will have to be analyzed in duplicate with and without internal standard[F3or betulinol will have to be used instead of cholestanol].
Textual Amendments
Separate off the lower aqueous phase collecting it in a second separating funnel. Perform two further extractions on the aqueous phase in the same way using 60 to 70 ml of ethyl ether on each occasion.
Any emulsion can be destroyed by adding small quantities of ethyl or methyl alcohol by means of a spray.U.K.
When the wash water has been removed, dry with anhydrous sodium sulphate and [X1filter through anhydrous] sodium sulphate into a previously weighed 250 ml flask, washing the funnel and filter with small quantities of [X1diethyl ether.]
Remove from the stove and keep in a calcium chloride desiccator until required for use (plates treated in this way must be used within 15 days).
When basic silica gel plates are used to separate the sterol fraction there is no need to treat the unsaponifiables with alumina. In this way all compounds of an acid nature (fatty acids and others) are retained on the spotting line and the sterols band is clearly separated from the aliphatic and triterpene alcohols band.U.K.
The developing mixture should be replaced for every test in order to achieve perfectly reproducible elution conditions.U.K.
Wash the residue [X1in the funnel three times with diethyl ether] (approximately 10 ml each time) collecting the filtrate in the same flask attached to the funnel. Evaporate the filtrate to a volume of 4 to 5 ml, transfer the residual solution to the previously weighed 10 ml test tube (3.9), evaporate to dryness by mild heating in a gentle flow of nitrogen, make up again using a few drops of acetone, evaporate again to dryness, place in a stove at 105 °C for approximately 10 minutes and then allow to cool in a desiccator and weigh.
The residue contained in the test tube consists of the sterol fraction.
Solutions which are ready for use are available commercially. Other silanizing reagents such as, for example, bis-trimethylsilyl, trifluor acetamide + 1 % trimethyl chlorosilane, which has to be diluted with an equal volume of anhydrous pyridine, are also available.U.K.
The slight opalescence which may form is normal and does not cause any interference. The formation of a white floc or the appearance of a pink colour are indicative of the presence of moisture or deterioration of the reagent. If these occur the test must be repeated.U.K.
Carry out general checks on the gas chromatograph unit (leaks from the gas circuits, detector efficiency, efficiency of the splitting system and recording system, etc.).
A negative straight-line drift indicates leakage from the column connections; a positive drift indicates inadequate conditioning of the column.
The conditioning temperature must always be at least 20 °C less than the maximum temperature specified for the stationary phase used.U.K.
column temperature: 260 ± 5 °C,
evaporator temperature: 280 °C,
detector temperature: 290 °C,
linear velocity of the carrier gas: helium 20 to 35 cm/s, hydrogen 30 to 50 cm/s,
splitting ratio: from 1:50 to 1:100,
instrument sensitivity: from 4 to 16 times the minimum attenuation,
recording sensitivity: 1 to 2 mV f.s.,
paper speed: 30 to 60 cm/hour,
amount of substance injected: 0,5 to 1 μl of TMSE solution.
These conditions may be varied in the light of column and gas-chromatograph characteristics so as to obtain chromatograms which meet the following requirements:
the retention time for β-sitosterol should be 20 ± 5 minutes,
the campesterol peak should be: for olive oil (mean content 3 %) 15 ± 5 % of full scale; for soya oil (mean content 20 %) 80 ± 10 % of full scale,
all the sterols present must be separated. In addition to being separated the peaks must also be completely resolved, i.e. the peak trace should return to the base line before leaving for the next peak. Incomplete resolution is however tolerated provided that the peak at TRR 1,02 can be quantified using the perpendicular.
The base line must continue to meet the requirements (5.4.1.2).
Identify individual peaks on the basis of retention times and by comparison with mixtures of sterol TMSE analysed under the same conditions.
The sterols are eluted in the following order: cholesterol, brassicasterol, 24-methylene cholesterol, campesterol, campestanol, stigmasterol, Δ 7-campesterol, Δ 5,23-stigmastadienol, [X1chlerosterol], β-sistosterol, sitostanol, Δ 5-avenasterol, Δ 5,24-stigmastadienol[X1, Δ 7-stigmasterol,] Δ 7-avenasterol.
The retention times for sitosterol for SE-52 and SE-54 columns are shown in Table 1.
Figures 1 and 2 illustrate typical chromatograms for some oils.
where:
=
mass of β-cholestanol] added, im milligrams;
=
mass of the sample used for determination, in grams.
The Whole Regulation you have selected contains over 200 provisions and might take some time to download. You may also experience some issues with your browser, such as an alert box that a script is taking a long time to run.
Would you like to continue?
The Schedules you have selected contains over 200 provisions and might take some time to download. You may also experience some issues with your browser, such as an alert box that a script is taking a long time to run.
Would you like to continue?
Latest Available (revised):The latest available updated version of the legislation incorporating changes made by subsequent legislation and applied by our editorial team. Changes we have not yet applied to the text, can be found in the ‘Changes to Legislation’ area.
Original (As adopted by EU): The original version of the legislation as it stood when it was first adopted in the EU. No changes have been applied to the text.
Point in Time: This becomes available after navigating to view revised legislation as it stood at a certain point in time via Advanced Features > Show Timeline of Changes or via a point in time advanced search.
Geographical Extent: Indicates the geographical area that this provision applies to. For further information see ‘Frequently Asked Questions’.
Show Timeline of Changes: See how this legislation has or could change over time. Turning this feature on will show extra navigation options to go to these specific points in time. Return to the latest available version by using the controls above in the What Version box.
Access essential accompanying documents and information for this legislation item from this tab. Dependent on the legislation item being viewed this may include:
This timeline shows the different versions taken from EUR-Lex before exit day and during the implementation period as well as any subsequent versions created after the implementation period as a result of changes made by UK legislation.
The dates for the EU versions are taken from the document dates on EUR-Lex and may not always coincide with when the changes came into force for the document.
For any versions created after the implementation period as a result of changes made by UK legislation the date will coincide with the earliest date on which the change (e.g an insertion, a repeal or a substitution) that was applied came into force. For further information see our guide to revised legislation on Understanding Legislation.
Use this menu to access essential accompanying documents and information for this legislation item. Dependent on the legislation item being viewed this may include:
Click 'View More' or select 'More Resources' tab for additional information including: